PS303: Week 9

pp.457-469

Recap

» Categorical data contrasts estimate whether group proportions vary significantly and meaningfully
between/within categories

» Continuous data contrasts estimate whether group means (parametric tests) or medians (non-parametric
tests) vary between/within categories

« Significance is informed by p-values (p < .05), which tells us how likely the observed data would be
assuming H is correct

« Effect sizes (e.g., Cohen’s d, Cramer’'s V, ng ) tell us whether a statistically significant difference is
practically meaningful

» For k < 2 groups, we run independent or pairwise contrasts to estimate differences

o For k > 2 groups, we run Analyses of Variance (ANOVAs) to estimate for “overall” effects.

» Significant ANOVAs can be followed by post-hoc (after the fact) tests, which identify whether any groups
notably vary across each other

Our strategies so far involved estimating differences between conditions. This is fine for experimental/quasi-
experimental designs, where specific conditions are identified beforehand. In many real-world scenarios however,
experimentation is not possible. In such cases, generating valid predictions may be more feasible.



Linear Regression Models

require(kableExtra)
require(tidyverse)

# Prepare data

set.seed(23)

physical <- c(sample(c(100:150),10,replace = T),sample(c(70:110),10,replace = T))
depress <- c(sample(c(40:50),10,replace = T),sample(c(45:65),10,replace = T))

id <- seq(1:20)

df <- cbind.data.frame(id,physical,depress)

df$id <- as.factor(df$id)

Let's assume you've collected data for your research report from n. = 20 participants. You have collected two sets
of scores that refer to Physical Activity and Depression.

ID Physical Activity (minutes)Depression scores

1 128 48
2 127 45
3 150 46
4 107 41
5 142 50
6 138 50
7 144 41
8 133 44
9 147 48
10 116 50
11 90 64
12 86 63
13 109 48
14 105 57
15 75 51
16 75 58
17 100 60
18 91 61
19 82 62
20 79 49

The two scales measure different qualities, and cannot be directly contrasted with one other.

Instead of looking at the differences between measures, can we assess whether one variable may predict
another?

Drawing a scatterplot

We can begin by plotting the data to explore for any apparent linear trends using scatterplots.



# Create scatterplot

attach(df)

plot(physical,depress,main="Scatterplot”,
xlab = "Physical Activity", ylab = "Depression",pch=19,
col = "blue")
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The data appears to be negatively associated - more time spent on physical activity corresponds with lower
depression scores.

We can illuminate the relationship by drawing a straight line through the center of the plot

# Create scatterplot

attach(df)

plot(physical,depress,main="Scatterplot”,
xlab = "Physical Activity", ylab = "Depression",pch=19,
col = "blue")

abline(1lm(depress~physical),col="red")
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The formula for drawing a straight line can be expressed as y = mx + ¢ where y and x represent the two
variables, and m and c are the two coefficients (multiplier quantity). Specifically, 1 represents the slope of the line
(how much will y change when x is incremented by a single unit) and ¢ represents the estimated value of the
dependent variable (y) when = = 0, otherwise known as the y-intercept.

The straight line going through the center of the data is a regression line. This can be estimated using the
formula described earlier (with some modifications)

Y, = b X; + by

Y, and X indicates i-th data points of the dependent and independent measures respectively. };'l-* indicates the
estimated data at the i-th point. The latter is the predicted data point, which we compare with the observed data
point. The remaining values (by, b; ) indicate the slope and intercept of the regression line.

* The difference between the predicted and observed values is called epsilon (€). For each i-th datapoint, we can

estimate the residual, €, = Y; — Y. We can apply this to the above formula to complete the linear regression
model

A

Y; = b1 X; + by



Y, — e = b1 Xi + b

Y, =0 X;i+b+e



A

The difference between predicted (Y') and observed values (Y') are the residuals (€). The closer the ‘fit’ between
predicted and observed values (ie the smaller the residuals), the better the model.

Imod <- 1m(df$depress~df$physical) # Regression model

cofl<- 1lmod$coefficients[1] # Intercept Coefficient
cof2<- 1lmod$coefficients[2] # Predictor Coefficient

# Compute predicted value from regression model coefficients
df$depress_pred <- cofl + cof2*df$physical

# Compute residuals
df$depress_res <- df$depress - df$depress_pred

# Create new data table
df2 <- df

# Create table
df2.tab <- kableExtra::kbl(df2,

booktabs = TRUE,

col.names = c("ID", "Physical Activity (minutes)", "Depression scores","Depression Predicted",
"Depression Residuals"),

align = c("1", "c", "c"))

df2.tab

4 b

ID Physical Activity (minutes)Depression scoresDepression PredictedDepression Residuals

1 128 48 48.67803 -0.6780347
2 127 45 48.86387 -3.8638660
3 150 46 44.58975 1.4102532
4 107 41 52.58049 -11.5804913
5 142 50 46.07640 3.9236030
6 138 50 46.81972 3.1802780
7 144 41 45.70473 -4.7047344
8 133 44 47.74888 -3.7488784
9 147 48 45.14724 2.8527594
10 116 50 50.90801 -0.9080099
11 90 64 55.73962 8.2603771
12 86 63 56.48295 6.5170521
13 109 48 52.20883 -4.2088288
14 105 57 52.95215 4.0478461
15 75 51 58.52709 -7.5270919
16 75 58 58.52709 -0.5270919
17 100 60 53.88131 6.1186898
18 91 61 55.565379 5.4462084
19 82 62 57.22627 4.7737270
20 79 49 57.78377 -8.7837668



# Create scatterplot with residual values only
attach(df)
plot(physical,depress,main="0Observations (blue)\nPredictions (red)",
xlab = "Physical Activity", ylab = "Depression",pch=19,
col = "blue")
abline(lm(depress~physical),col="red")
points(physical,depress_pred,pch=19,col="red") # Predicted points
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detach()

# Create scatterplot with residual Lines
attach(df)
plot(physical,depress,main="0Observations (blue)\nPredictions (red)\nResiduals (green)",
xlab = "Physical Activity", ylab = "Depression",pch=19,
col = "blue")
abline(1lm(depress~physical),col="red")
points(physical,depress_pred,pch=19,col="red") # Predicted points
for (i in 1:20) { # Add residual Llines
lines(c(physical[i],physical[i]),
c(depress[i],depress_pred[i]),
lwd=2,col="green")
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Entering Physical Activity and Depression as our X and Y variables into the earlier formula, we can estimate
the predicted depression (Y; = b1 X; + by) scores and their corresponding residuals (¢; = Y; — Y;).

How do we estimate the coefficients (ie by, by. . . b;)?



Running LRMs

The goal for a LRM is to estimate coefficients that produce the smallest residuals possible (least discrepancy
between predictions and observations). Formally, this would be the smallest sum of the squared residuals.

V-V’ +(R-Y)+ Y -Y). . (G-Y) =) (-’ =) ¢

1

The estimation process is known as Ordinary Least Squares (OLS) regression. We can estimate our coefficients
using the 1m() function (/Im = linear model).

Lets create our data frame

# Individual IDs

id <- ¢( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20)

# Physical activity scores

physical <- c(

128, 127, 150, 107, 142, 138, 144, 133, 147, 116, 90, 86, 109, 105, 75, 75, 10e, 91, 82, 79)
# Depression scores

depress <- c( 48, 45, 46, 41, 50, 50, 41, 44, 48, 50, 64, 63, 48, 57, 51, 58, 60, 61, 62, 49)
# Bind columns as data frame

df <- cbind.data.frame(id,physical,depress)

# Ensure that ID variable is stored as a factor

df$id <- as.factor(df$id)

We can estimate our coefficients

modl <- lm(data = df,formula=depress~physical)
mod1

#i

## Call:

## 1m(formula = depress ~ physical, data = df)
#i

## Coefficients:

## (Intercept) physical

#i 72.4644 -0.1858

Our coefficients are 72.46 (y-intercept) and -0.19 (line slope). We can enter these values into the formula for a
straight line to estimate predicted changes in y.

Yy=mz+c

becomes

y = —.186z + 72.464



Similar to ANOVAs, if we want to extract p-values, we call the summary() function.

summary (mod1)

##

## Call:

## lm(formula = depress ~ physical, data = df)

##

## Residuals:

it Min 1Q Median 3Q Max

## -11.5805 -3.9501 0.4416 4.2293 8.2604

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t])

## (Intercept) 72.46444 5.78642 12.523 2.53e-10 ***

## physical -0.18583 0.05074 -3.662 0.00178 **

## ---

## Signif. codes: © '***' 9,901 '**' 9.01 '*' ©0.05 '.' 0.1 ' ' 1
H#

## Residual standard error: 5.73 on 18 degrees of freedom
## Multiple R-squared: ©0.427, Adjusted R-squared: ©.3951
## F-statistic: 13.41 on 1 and 18 DF, p-value: 0.001783



Multiple predictors

A key feature of regression models is that we are not restricted to single predictor-outcome relationships. We can
include multiple predictors to estimate how much of the total variance in output are explained by each IV. While we
may in principle add “as many predictors” as we want, increasing parameters renders interpretation of a model
increasingly complex. It's best to add predictors that are theoretically coherent with the predictions being made.

« Suppose we find out after our initial analyses that the ages of our n = 20 varied
between 18 and 45 years. You want to know whether people become less
depressed as they get older. Specifically, you want to know whether age
predicts variances in depression scores.

We can add participant age to our earlier data frame and run a linear model

dfgage <- c( 23, 18, 25, 19, 23, 21, 21, 20, 18, 22, 35, 27, 40, 44, 40, 32, 44, 25, 30, 42 )

mod2 <- lm(data=df, depress~physical+age)
mod2

H##

## Call:

## lm(formula = depress ~ physical + age, data = df)
##

## Coefficients:

## (Intercept) physical age

## 67.83818 -0.16622 0.08596

We can extract R? and p-values using the summary() function as before

summary (mod2)



##
H#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
H#
##
H#

R? describes the proportion of variance that can be accounted for by the predictor variable(s). Our regression
model estimated 43% of the variance noted across depression scores, with physical activity being the only
significant predictor. Formally, we expand our earlier regression model by adding another coefficient to represent
age.

We can estimate the variance in depression scores as a function of our predictors.

Call:
Im(formula = depress ~ physical + age, data = df)
Residuals:

Min 1Q Median 3Q Max
-10.6858 -3.7645 0.4118 4.,0915 8.1131
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 67.83818  11.84449 5.727 2.47e-Q5 ***
physical -0.16622 0.06772 -2.455 0.0252 *
age 0.08596 0.19062 0.451 0.6577
Signif. codes: @ '***' 9,001 '**' @9.01 '*' ©.05 '.' 0.1 ' ' 1

Residual standard error: 5.861 on 17 degrees of freedom

Multiple R-squared:
F-statistic:

0.4337, Adjusted R-squared:
6.51 on 2 and 17 DF,

0.3671
p-value: 0.007957

Y—i = b2Physical + blAge + bO

Vi = —17physicar + -0944c + 67.84



Hypothesis tests

Similar to earlier procedures, we can test the utility of our model using hypothesis tests.

» Does the model perform better than a null model?
o Hj: There is no relationship between predictor and outcome variables
o H,4: There is a relationship (in the manner our model predicts)
« Is a particular coefficient better than 0?
o H,: The target coefficient (b) is equivalent to the null (b = 0)
o H 4: The target coefficient (b) is equivalent to the null (b # 0)

« Fortunately, there are no new tests to run. The F'-ratio and ¢-statistics outputs
produced by the summary() of our linear model respectively inform us whether
our models and/or coefficients vary significantly from null estimates.

Reporting outcomes

A multiple OLS regression was calculated to predict depression scores based on participants’ physical activity level
and age. A significant regression equation was found, F'(2,17) = 6.51,p = .008, with an R? of .43. Participant
depression scores were equal to 67.84 — .17pgysicar, + -094¢E, with both predictors measured as
continuous variables. Depression scores fell by .17 for each minute engaged in physical activity; depression
scores increased by .09 for each additional year of age. Only physical activity significantly predicted depression,

t = 2.45,p = .025.

We will continue discussing regression models the following week. There are no labs for this week.



