
PS303: Week 8

pp. 425-452

Recap

• When working with nominal/ordinal (categorical) data, we tested whether observed distributions of
proportions were statistically different relative to expected proportions. This included:

– Binomial tests for testing binary data distributions (categorized as successes and failures)
– χ2 tests for assessing proportion distributions of >2 categories.

• In the case of continuous data, we test whether observed point estimates (e.g., means, medians) vary
from expected estimates (typically a null difference).Because point estimates refer to sample properties
whereas we are generally interested in population parameters, we typically supplement point estimates
with range estimates. The latter may include standard deviation, standard error, and confidence
intervals.

• We have discussed test statistics for contrasting pairs of continuous data using Student’s and Welch’s
t-tests. This included:

– 1-sample tests for contrasting a single sample’s parameter with a known population parameter.

– 2-sample tests for contrasting between two sample parameters. When data was sampled from two
independent groups, we ran an independent/Welch’s t-test. When data was sampled from the
same group at two time-points, we ran a paired t-test.

– We focused on Welch’s test since it is more robust to violations of homogeneity of variance and
balanced samples.

• When we are interested in analyzing the variance of ≥ 3 groups, we can run an Analyses of Variance
(ANOVA). Instead of t or χ2 test statistics, ANOVA generates F-ratios that identifies the likelihood
of current observations relative to a null hypothesis (HO).

– If HO is rejected, we can follow up our ANOVA with post-hoc two-sample tests to estimate whether
there may be any meaningful differences between group pairs.

– We don’t begin our analysis with two-sample tests as the number of contrasts that are run is
positively associated with increased Type-1 error (false positives become more likely to be de-
tected). Think of why this may be the case in light of the p < .05 threshold that is common in
psychological research (see here for details).

– We will begin with running a one-way ANOVA on a real dataset
– Similar to t-tests, ANOVAs are least biased when samples are balanced, data is normal, and there

is homogeneity of variance. When the latter assumption is not met, than Welch’s F -test and
Kruskal-Wallis tests are commonly used alternatives.
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Table 1: Anxiety scores across 3 studying spaces
Green Space Urban Space Mixed Space

6 3 3
1 8 2
2 7 6
6 6 6
4 5 7
4 3 8
3 5 3
1 8 8
5 7 6
3 3 3
3 9 8
4 7 6
2 5 4
6 9 3
7 3 6
4 5 5
1 9 4
5 6 4
6 9 3
2 3 5

Note:
All scores are simulated.

One-way ANOVA

Use: You have ≥ 3 levels of an independent variable and a continous dependent outcome. The
sample is balanced, there is homogeneity of variance, and the data is normally distributed.

Example: You remember reading somewhere that increased proportion of (perceivable) green space (is)
associated with decreased anxiety/mood disorder. . . in an urban environment (Nutsford, Pearson & Kingham,
2013). You speculate that a similar ‘green advantage’ may help in reducing students’ anxiety before their
exam.

To test your hypothesis, you recruit 60 students (N = 60). Each student is required to study for an hour in
one of 3 environments before sitting for an exam. The environments include a ‘green space’, an ‘urban space’
and a ‘mixed space’. After students have spent an hour, you ask them to complete an anxiety questionnaire.
You tabulate their outcomes across the following table (higher scores indicate greater anxiety).

We can describe estimate the mean, standard deviation (SD) and standard error ( SD√
N−1 ) to get an overview

of the data.

# Function for estimating mean, sd and se for a numeric variable (all values rounded to 2 decimal places)

mean_sd_se <- function(x){
m <- round(mean(x),2)
sd <- round(sd(x),2)
se <- round(sd(x)/sqrt((length(x)-1)),2)
msd <- paste0("M = ", m, "; SD = ", sd, "; SE = ", se)
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msd
}

• Green space (n= 20): M = 3.75; SD = 1.89; SE = 0.43

• Urban space (n= 20): M = 6; SD = 2.25; SE = 0.52

• Mixed space (n= 20): M = 5; SD = 1.89; SE = 0.43

We could explore the data visually
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Descriptive boxplots of anxiety scores across 3 workspaces

Anxiety scores collected from participants studying in green space appears to be the lowest. But is this
statistically significant? We can test the null hypothesis that the mean anxiety scores (µ′s) across the three
study spaces are not statistically different.

HO : µGreen = µUrban = µMixed

.

Caution: Before running a test, it is necessary to check whether the assumptions for a test are satisfied -
is the data normal? Are the samples balanced? Is there homogeneity of variance?
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Preparing the data

Let’s set up our variables

green<-c(6,1,2,6,4,4,3,1,5,3,3,4,2,6,7)
urban<-c(6,3,7,8,4,3,8,7,6,5,3,5,8,7,3)
mixed<-c(8,6,4,8,2,4,8,5,8,2,3,2,6,6,7)

You can use the function (from the previous slide) to extract means, standard deviations and standard error.
For example

# Get summary stats for anxiety scores are green space users
mean_sd_se(green)

## [1] "M = 3.8; SD = 1.9; SE = 0.51"

It’s good practice to keep all relevant data within a single structure, such as a data frame. We will combine
the three variables (green, urban, mixed) as columns, then re-organize the structure for easier analyses
further on.

# Install package (first time only)
# install.packages('tidyverse')

# Load package
require('tidyverse')

# Let's set up the variables from before into a dataframe
df <- cbind.data.frame(green,urban,mixed)

# Re-organize the dataframe (so factors are variables)
df.1<-gather(data = df, # Data frame created above

key="study.space", # Factor (IV) label
value = "anxiety.score", # Outcome (DV) label
green,urban,mixed) %>% # Factor levels
mutate(study.space=factor(study.space)) %>% # Identify as factor
mutate(ID = row_number()) # Create ID variable (optional for now)

# Print outcome
kbl(df.1,booktabs = T) # Using the 'kableExtra::kbl()' function for prettier output
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study.space anxiety.score ID
green 6 1
green 1 2
green 2 3
green 6 4
green 4 5
green 4 6
green 3 7
green 1 8
green 5 9
green 3 10
green 3 11
green 4 12
green 2 13
green 6 14
green 7 15
urban 6 16
urban 3 17
urban 7 18
urban 8 19
urban 4 20
urban 3 21
urban 8 22
urban 7 23
urban 6 24
urban 5 25
urban 3 26
urban 5 27
urban 8 28
urban 7 29
urban 3 30
mixed 8 31
mixed 6 32
mixed 4 33
mixed 8 34
mixed 2 35
mixed 4 36
mixed 8 37
mixed 5 38
mixed 8 39
mixed 2 40
mixed 3 41
mixed 2 42
mixed 6 43
mixed 6 44
mixed 7 45

Scores represent individual participants. For most cases, individual participant data should be
presented as rows.
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Once you have a data structure organized, it becomes easier to run operations whole scale. For example,
using the rstatix package, we can get a summary of the data

# Load package
require(rstatix)

df.1 %>% # Select the data frame of interest
group_by(study.space) %>% # Group our data by the factor of interest (IV)
get_summary_stats(anxiety.score) # Select the DV to summarize by factor

## # A tibble: 3 x 14
## study.s~1 varia~2 n min max median q1 q3 iqr mad mean sd
## <fct> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
## 1 green anxiet~ 15 1 7 4 2.5 5.5 3 2.96 3.8 1.90
## 2 mixed anxiet~ 15 2 8 6 3.5 7.5 4 2.96 5.27 2.31
## 3 urban anxiet~ 15 3 8 6 3.5 7 3.5 2.96 5.53 1.96
## # ... with 2 more variables: se <dbl>, ci <dbl>, and abbreviated variable names
## # 1: study.space, 2: variable
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Assumption checks: Is the data normally distributed?

There are a variety of methods for assessing a normal distribution. First, we can construct histograms to
visually inspect the ‘shape’ of the distributions. In a normal distribution, the majority of data are clustered
around the mean. Here is an example of a normally distributed dataset

Normally distributed data for 200 data points
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Now let’s look at the distributions of data we have

# The scale ('xlim') ranges from '1' (Not anxious) to '9' (Very anxious)
hist(green,main = "Green Space",col = "#99ffcc",xlab = "Anxiety",xlim = (c(1,9)))
hist(urban,main = "Urban Space",col = "#826003",xlab = "Anxiety",xlim = (c(1,9)))
hist(mixed,main = "Mixed Space",col = "#617d05",xlab = "Anxiety",xlim = (c(1,9)))
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The data does not look normal, although this may simply be due to an insufficient sampling distribution.
We may also run Shapiro-Wilk tests to formally estimate if the observed distributions significantly vary
from a normal distribution (here, a lack of a significant effect is desirable as it suggests the assumption for
normality had not been violated).

shapiro.test(green)

##
## Shapiro-Wilk normality test
##
## data: green
## W = 0.9431, p-value = 0.4229

shapiro.test(urban)

##
## Shapiro-Wilk normality test
##
## data: urban
## W = 0.87376, p-value = 0.03834
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shapiro.test(mixed)

##
## Shapiro-Wilk normality test
##
## data: mixed
## W = 0.8831, p-value = 0.05279

2 out of 3 distributions do not violate the normality assumption (but the data for Urban Spaces do) - this
will be sufficient for us to continue with our assumption tests (we will go through an alternative procedure
later).

If you want to know more about the Shapiro-Wilkinson test, check out this link.
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Assumption checks: Are sample variances homogenous?

# Load the package
require(rstatix)

# We can run a Levene's test on the dataframe created previously
# A non-significant outcome imples the homogeneity of variance assumptions has NOT been violated
lev.test <- levene_test(data=df.1,formula = anxiety.score~study.space)
lev.test

## # A tibble: 1 x 4
## df1 df2 statistic p
## <int> <int> <dbl> <dbl>
## 1 2 42 0.451 0.640

Levene’s test assumes homogeneity of variance as the null hypothesis

HO : SD2
green = SD2

urban = SD2
mixed

. The p-value suggests there is a 0.64 likelihood of observing the current distributions if the null is ‘true’. Be-
cause this is larger than the significance threshold (p=.05), we can retain the null. Critically, the homogeneity
of variance assumption is conserved.
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Running a one-way ANOVA

Using R’s built-in functions. . .

# Base functions ('aov' for anovas)
res.aov <- aov(anxiety.score~study.space, # Describe the formula; DV~IV

df.1) # Name of the relevant data structure

# Use the summary argument to extract the relevant parameters
summary(res.aov)

## Df Sum Sq Mean Sq F value Pr(>F)
## study.space 2 26.13 13.067 3.065 0.0572 .
## Residuals 42 179.07 4.263
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Another approach is to use the rstatix package (this will be useful for more complex models later).

# Ensure the 'rstatix' package is loaded beforehand
classic.aov <-anova_test(df.1, # Data structure

anxiety.score~study.space,# Formula for ANOVA
wid=ID, # ID variable
effect.size = "pes") # Effect size

# Print
classic.aov

## ANOVA Table (type II tests)
##
## Effect DFn DFd F p p<.05 pes
## 1 study.space 2 42 3.065 0.057 0.127

We can report our findings as follow:

A one-way ANOVA indicated that anxiety scores did not significantly vary between green, urban and mixed
study spaces, F(2, 42) = 3.06, p = .057, η2

p = .13. The null hypothesis may be retained.

11



ANOVA alternatives: Welch’s ANOVA

Welch’s ANOVA is generally the preferred alternative when the homogeneity of variance has been violated
(Levene’s test generates a p-value less than .05) while the data remains balanced and normally distributed.
Alternatively, if homoscedasticity and normality is conserved, you could run the classic ANOVA (even if
your sample is unbalanced).

Although homoscedasticity was conserved across our simulated dataset, we will run Welch’s ANOVA for the
sake of illustration:

# Using the `rstatix` package
require(rstatix)
waov <- welch_anova_test(df.1,anxiety.score~study.space)
waov

## # A tibble: 1 x 7
## .y. n statistic DFn DFd p method
## * <chr> <int> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 anxiety.score 45 3.36 2 27.8 0.049 Welch ANOVA

In this case the null hypothesis is rejected. However, because the homogeneity of variance assumptions were
not violated, it would be typically inappropriate to report Welch’s F-test.

One recommended approach is to avoid testing for homoscedasticity in the first place and simply use Welch’s
ANOVA by default when running one-way tests (Delacre, Leys, Mora, & Lakens, 2019). According to those
authors, two reasons for this are:

• Homogeneity of sample variance (homoscedasticity) is unlikely in real-life circumstances.
• There is a considerable gain in Type-1 error control rates (lower chance of detecting false positives).

For further details, check out the article by Delacre et al (2019) linked above.

We can report Welch’s ANOVA in the same way as a classical ANOVA:

A Welch’s F -test indicated that anxiety score variance across the three study spaces were significantly
different from the null, F2,27.8 = 3.36; p = 0.049. We are now justified in running post-hoc tests to examine
which group means vary significantly relative to one another.
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Post-hoc comparisons

There are a variety of methods available for contrasting between group means following a significant F-test.
- If samples are balanced and homoscedastic, a common approach is Tukey’s Honestly Significant
Difference test (abbreviated as Tukey HSD).
- If samples are unbalanced and/or heteroscedastic, we can run the Games-Howell test.

Post-hoc tests vary from conventional t-tests by controlling for familywise error rates (the inflation of Type-1
error associated with multiple comparisons). Specifically, instead of a ‘one-size-fits-all’ p-value, the latter
becomes adjusted in accordance with the number of comparisons being made. For additional details on how
this is achieved, see the discussion here by Jim Frost..
We will use both methods for the sake of illustration:

1. Tukey’s HSD

# When samples are balanced and homoscedastic
tukey_hsd(df.1,anxiety.score~study.space)

## # A tibble: 3 x 9
## term group1 group2 null.value estimate conf.low conf.h~1 p.adj p.adj~2
## * <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 study.space green mixed 0 1.47 -0.365 3.30 0.139 ns
## 2 study.space green urban 0 1.73 -0.0984 3.57 0.0669 ns
## 3 study.space mixed urban 0 0.267 -1.57 2.10 0.933 ns
## # ... with abbreviated variable names 1: conf.high, 2: p.adj.signif

2. Games-Howell

# When samples are unbalanced and/or heteroscedastic
games_howell_test(df.1,anxiety.score~study.space)

## # A tibble: 3 x 8
## .y. group1 group2 estimate conf.low conf.high p.adj p.adj.signif
## * <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
## 1 anxiety.score green mixed 1.47 -0.449 3.38 0.159 ns
## 2 anxiety.score green urban 1.73 -0.00916 3.48 0.051 ns
## 3 anxiety.score mixed urban 0.267 -1.67 2.21 0.938 ns

We can expand our earlier outcome statements with the above results - if we ran a classical ANOVA with
Tukey’s HSD we can report:

A one-way ANOVA indicated that anxiety scores did not significantly vary between green, urban and mixed
study spaces, F(2, 42) = 3.06, p = .057, η2

p = .13. Tukey’s HSD confirmed that none of the group means
significantly varied from each other (all p’s > .06), as expected (Note: You should not run post-hoc
tests if your ANOVA is non-significant).
Alternatively, if we ran Welch’s F -test and Games-Howell tests, we may report:

A Welch’s F -test indicated that anxiety score variance across the three study spaces were significantly
different from the null, F2,27.8 = 3.36; p = 0.049. Post-hoc Games-Howell tests indicated none of the group
means varied significantly from each other, although the difference between anxiety scores collected in green
and urban studying spaces approached significance (p = .051).
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Table 2: Personality scores across 5 dimensions
Extroversion Openness Conscientuousness Neuroticism Agreeableness

6 6 6 6 7
9 2 5 2 2
8 1 9 2 1
1 5 7 7 3
5 4 5 8 8
3 1 9 3 9
4 8 4 5 3
8 3 1 4 1
4 8 2 3 3
1 NA 1 4 NA

Note:
Missing data (NA) for Openness and Agreeableness

ANOVA alternatives: Kruskal-Wallis tests

You may occasionally come across data that is unbalanced designs (levels have varying numbers of observa-
tions), not normal and/or homoscedastic. When assumptions are not met, we run the Kruskal-Wallis test
across parameter medians.

Suppose we have the following data from a personality test.

When setting up our data frame, you can include NA in the vector to account for missing values. By equating
vector lengths, it is possible to combine them into a data frame.

# 5 personality dimensions
e <- c(6, 9, 8, 1, 5, 3, 4, 8, 4, 1)
o <- c(6, 2, 1, 5, 4, 1, 8, 3, 8,"NA")
c <- c(6, 5, 9, 7, 5, 9, 4, 1, 2, 1)
n <- c(6, 2, 2, 7, 8, 3, 5, 4, 3, 4)
a <- c(7, 2, 1, 3, 8, 9, 3, 1, 3,"NA")

# Combine into data frame and print
df2 <- cbind.data.frame(e,o,c,n,a)
df2

## e o c n a
## 1 6 6 6 6 7
## 2 9 2 5 2 2
## 3 8 1 9 2 1
## 4 1 5 7 7 3
## 5 5 4 5 8 8
## 6 3 1 9 3 9
## 7 4 8 4 5 3
## 8 8 3 1 4 1
## 9 4 8 2 3 3
## 10 1 NA 1 4 NA

We can use the gather function to prepare the data. . .
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# Gather columns into a single ID variable
df3 <-gather(df2, # Name of data frame

key = "Personality", # IV label
value = "Ratings", # DV label
e,o,c,n,a) # IV levels

df3

## Personality Ratings
## 1 e 6
## 2 e 9
## 3 e 8
## 4 e 1
## 5 e 5
## 6 e 3
## 7 e 4
## 8 e 8
## 9 e 4
## 10 e 1
## 11 o 6
## 12 o 2
## 13 o 1
## 14 o 5
## 15 o 4
## 16 o 1
## 17 o 8
## 18 o 3
## 19 o 8
## 20 o NA
## 21 c 6
## 22 c 5
## 23 c 9
## 24 c 7
## 25 c 5
## 26 c 9
## 27 c 4
## 28 c 1
## 29 c 2
## 30 c 1
## 31 n 6
## 32 n 2
## 33 n 2
## 34 n 7
## 35 n 8
## 36 n 3
## 37 n 5
## 38 n 4
## 39 n 3
## 40 n 4
## 41 a 7
## 42 a 2
## 43 a 1
## 44 a 3
## 45 a 8
## 46 a 9
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## 47 a 3
## 48 a 1
## 49 a 3
## 50 a NA

If homogeneity of variance is conserved (Levene’s test is not significant), we could run a conventional ANOVA.
Otherwise, we can run a non-parametric Kruskal-Wallis test which compares between group median (not
mean) estimates. KW-tests are robust to violations of normality and large outliers, and preferred when
assumptions are not met.

## Two ways of running the same KW test...

# Using base R
kruskal.test(Ratings~Personality,df3)

##
## Kruskal-Wallis rank sum test
##
## data: Ratings by Personality
## Kruskal-Wallis chi-squared = 0.19624, df = 4, p-value = 0.9955

# Using 'rstatix'
kruskal_test(df3,Ratings~Personality)

## # A tibble: 1 x 6
## .y. n statistic df p method
## * <chr> <int> <dbl> <int> <dbl> <chr>
## 1 Ratings 50 0.196 4 0.995 Kruskal-Wallis

The test was not significant. We can report this as follows:

A Kruskal-Wallis test indicated the five group medians did not significantly vary from the null,
χ2(4) = .19; p = .996.
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Summary of steps in a classical ANOVA

Is the difference in mean estimates between (at least) three groups (call these A, B, C) signifi-
cant?

• H0 : µA = µB = µC - Null hypothesis

• HA : µA ̸= µB ̸= µC - Alternative hypothesis

1. Estimate between-group variability (MSB) to quantify how much individual group means
(µA, µB , µC ...µk) vary from the overall/grand mean (µ). We first estimate the Sum of Squared
variance Between groups, or SSB . We weigh each group’s variance in respect to it’s sample size
(nA, nB , nC).

SSB = nA(µA − µ)2 + nB(µB − µ)2 + nC(µC − µ)2 =
∑

nk(µk − µ)2

We next estimate mean between-group variance (MSB) by dividing SSB with between group degrees
of freedom (dfk = k − 1 where k is the number of groups).

MSB = SSB

dfk
=

∑
nk(µk − µ)2

k − 1
.

2. Estimate within-group variability (MSW ) to quantify ‘spread’ of individual means within respected
groups. We first estimate the Sum of Squared variance Within groups, or SSW . Assuming each
individual observation within a single group as i, then

SSW =
∑

(Ai − µA)2 +
∑

(Bi − µB)2 +
∑

(Ci − µC)2 =
∑

(ki − µk)2

. We can next estimate the average within group variance, where

MSW = SSW

dfW
=

∑
(ki − µk)2

N − k

3. MSB tells us how much group means vary from the grand mean, and MSW tells us how much individual
observations vary from their respective group means. The F -statistic is estimated as the ratio of the
two variability estimates.

F = MSB

MSW

A larger F -ratio implies the variance between groups is greater than the variance within groups. The
larger the difference, the greater the likelihood of the tested samples representing different populations.
We can check whether this difference is statistically significant (p < .05) by finding out whether the
observed F is larger than the critical F value. This can be looked up manually or estimated in
R using qf(p,df1,df2,lower.tail=F), where p indicates the significance threshold, df1 indicates
between groups dfk, and df2 indicates within groups dfW .

4. Assuming a significant effect was found, we can estimate an effect size (η2) by dividing the between-
groups variability (SSB) by the total variability (SST otal = SSB + SSW ). So,

η2 = SSB

SST otal

A significant ANOVA does not tell us which specific groups vary relative to each other, which we investigate
using post-hoc tests.
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Activity

You selected USP as a preferred college based on the notion that USP graduates have higher IQ scores than
FNU or UoF graduates. To test this hypothesis, you collected the IQ scores for 20 students from USP, 20
students from FNU and 18 students from UoF. The data is listed below:
- 20 USP students’ IQ scores:89,99,94,86,90,101,110,109,96,95,88,106,85,102,104,97,91,107,98,93
- 20 FNU students’ IQ scores:110,105,109,87,86,104,106,103,92,95,98,89,101,99,100,90,108,93,97,85
- 18 UoF students’ IQ scores:85,91,101,90,86,87,108,95,104,110,88,109,92,106,102,96,105,93,NA,NA
Please complete all activity questions

1. Assign the values provided above into separate variables, than combine them to a tidy dataframe
(remember to use the gather function from the tidyverse package to ensure the factor and outcome
variables are two seperate columns). Show your code and output.

2. Assess each variable’s normality using histograms and Shapiro-Wilk tests.

3. Assess whether sample variances are homogeneous.

4. Run a one-way ANOVA or a Welch’s ANOVA or a Kruskal-Wallis test. Provide reasons for test
selection and report your findings in APA format.

5. If your model is significant, run post-hoc tests using Tukey’s HSD or Games-Howell. Provide reasons
for your selection. Report your output in APA format.

Submit your work in the dropbox for this week.
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