
PS303: Week 7

pp. 379-437

From categories to intervals and ratios

• We discussed strategies for describing and analyzing categorical data. Categories cannot be meaning-
fully sub-divided into smaller units as each level is distinct. Think of colors, species and religions.

– The type of test we run depends on our data structure. If we have a binary outcome variable which
can be conceptualized in terms of ‘successes’ and ‘fails’ (e.g., Heads vs Tails; Wins vs Losses), we
can run binomial tests to estimate the likelihood of a ‘success’ and it’s associated p-value.

– When we have multiple (>2) levels of categorical data, we can estimate χ2 statistics to determine
whether observed category distributions are statistically significant in terms of being different
(two-sided) or greater/smaller (one-sided) from an expected distribution (the null hypothesis,
or HO).

– We generate decisions about retaining/rejecting HO based on the p-value - e.g., is p < .05? The
latter describes the probability of acquiring the observed data assuming the null hypothesis is
true.

• Beyond discrete categories, you will encounter continuous data that can be conceptualized as intervals
and ratios (intervals + absolute 0). Think of age, height, weight, distance, and brain activity - any pa-
rameter that can be sub-divided ad infinitum while retaining equal distance relative to adjacent values.
For the remainder of the course, we will focus on describing, analyzing and interpreting continuous
parameters using inferential tests common to the social sciences.

• We will focus on t-tests today, covering:

– 1-sample vs 2-sample t-tests
– One-sided (“greater”, “less”) vs two-sided (“two.sided”) contrasts
– Independent vs paired/repeated tests
– Parametric vs non-parametric contrasts
– Why Psychologists should use Welch’s test (Delacre, Lakens & Leys, 2017)
– Why Hedge’s G should be reported with Welch’s test (Delacre, Lakens, Ley, Liu & Leys, 2021).

1-sample t-tests

Use: You have data for a single sample which you want to compare against a population param-
eter.

• Required parameters

• Sample mean (X̂)

• Sample standard deviation (SDs)
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• Sample size (n)

• Population mean (µ)
You can then compute the test statistic (t) as follows:

t = X̂ − µ
SDs√

n

Example: You collect the ages of 10 students in PS303 (n) in the classroom. You want to know if the mean
age of your sample (X̂) is different from the mean age of all 3rd year USP students, which is 22 years (µ).

The ages of the 10 students are 24, 25, 25, 27, 20, 20, 28, 21, 30, 20. The sample mean may then be calculated
as

24 + 25 + 25 + 27 + 20 + 20 + 28 + 21 + 30 + 20
10 = 240

10 = 24

.

We can compute the sample standard deviation as

SDs =

√∑
(Xi − X̂)

2

n − 1

. Plugging in our values gives us

SDs =
√

(24 − 24) + (25 − 24) + (25 − 24) + (27 − 24) + (20 − 24) + (20 − 24) + (28 − 24) + (21 − 24) + (30 − 24) + (20 − 24)
15 − 1 = 3.65

We can now compute the test statistic:

t = X̂ − µ
SDs√

n

= 24 − 22
3.65√

15
= 1.73

Is the outcome statistically significant at p < .05? We can look up the test statistic distribution to check. . .

We can speed up the process by running the entire test in R

# store the sample's ages into a variable (called 'x'). Remember that the population parameter ('mu') is assumed to be 22.
x <- c(24,25,25,27,20,20,28,21,30,20)

# run the test!
t.test(x,mu=22,alternative = "two.sided")

##
## One Sample t-test
##
## data: x
## t = 1.7321, df = 9, p-value = 0.1173
## alternative hypothesis: true mean is not equal to 22
## 95 percent confidence interval:
## 21.38789 26.61211
## sample estimates:
## mean of x
## 24
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Figure 1: Test statistic distribution

3



We can report the outcome as follows:

The mean age of 10 PS303 students (X̂ = 24) was not significantly different from the mean age of all 3rd

year students (µ = 22) following a one-sample t-test, t(9) = 1.73, p = .117, d = 0.55. The null hypothesis
(HO : X̂ − µ = 0) was not rejected.

Q. What would you alter if you wanted to know whether the mean age of PS303 students was statistically
greater than the (assumed) population mean?

4



2-sample t tests (Student’s vs Welch)

Use: You want to know whether the difference between two samples (of n ≥ 5 per sample)
varies significantly from the expected difference (knowledge of the population parameter is not
necessary). The null hypothesis can be described as follows: H0 : X̂1 − X̂2 = 0; that is, the mean
difference between the two sample parameters is not statistically different from 0.

The conventional procedure for a 2-sample test involves Student’s approach. The parameters for the equation
are similar to those you have already encountered:

• X̂1 and X̂2 are mean parameters for the two groups being compared.
• SD1 and SD2 are the sample standard deviations for the two groups
• n1 and n2 are the sample sizes for each group

Student’s 2-sample test statistic for independent(unpaired) samples can be estimated as follows:

t = X̂1 − X̂2√
(n1−1)SD2

1+(n2−1)SD2
2

n1+n2−2 × ( 1
n1

+ 1
n2

)

where the degrees of freedom is estimated as df = n1 + n2 − 2.

Note the following features of Student’s formulation:

• The error term (difference between an estimate and it’s true value) is pooled across the two samples
because (it is assumed) that both sample variances represent a common population, in which case
variances should be homogeneous.

• Homogeneity of variance is vital for deriving an unbiased estimator but is not always the case when ex-
amining ‘real-world’ data due to (i) natural variability between groups (intellectual variability between
men and women; non-random assignment to conditions) and (ii) the inclusion of the experimental
treatment (e.g., placebo application).

• It is also assumed (for Student’s t) that each sample contains an equal number of participants (is
balanced), otherwise pooled variance will be biased towards the larger sample.

• Finally, both samples should be normally distributed to generate a reliable estimate.

In sum, the following assumptions should be met in order to reliably interpret a Student’s t-test:

• Is the data normally distributed across samples?

• Are sample sizes balanced? Is the design parametric? (Not a concern for paired contrasts)

• Are the variances between the tested groups statistically equivalent?

Not meeting these assumptions renders the output of a Student’s t-test biased. A lot of real-world data does
not meet these assumptions, presenting unbalanced designs, non-normal data, and/or unequal variances.
Although one could mathematically transform the data to try and meet these assumptions (e.g., by reduc-
ing spread) or run nonparametric tests (which look at ranked data and are more prone to Type-2 error),
interpretive issues can be mitigated by using Welch’s t-test by default..

tW elch = X̂1 − X̂2√
SD2

1
n1

+ SD2
2

n2
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with the degrees of freedom (from which the critical value is found) being

dfW elch =
( SD2

1
n1

+ SD2
2

n2
)2

(
SD2

1
n1

)2

n1−1 +
(

SD2
2

n2
)2

n2−1

Instead of pooling variance across samples (as was the case with Student’s t), Welch’s test divides the group
mean difference with an unpooled error term, which takes different sample sizes and variances into account.
As a result, the estimated p-value and test statistic is more robust to imbalanced sample sizes and unequal
variance. However, the assumption of normality is still required for an unbiased Welch’s estimate (although
this is less important than for Student’s t). For the remainder of this course, we will use Welch’s t-test
by default so as to avoid the ‘conventional’ two-step procedure required for Student’s test statistic (test for
variance homogeneity and then decide the test to run, which can lead to reduced Type-1 error).
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Running 2-sample tests

When we contrast two independent groups, we run an independent samples t-test. When we
contrast the same group at two time points, we run a paired t-test.

• The arguments within the t.test function shown earlier allows running both types of contrasts.

Example of an independent t-test using Welch’s method

You are interested in finding out whether the amount of time spent on social media influences depression
rates. You recruit 40 students and ask them about their online habits. Using their responses, you split your
students into a High-Social-Media group (n1 = 26) and a Low-Social-Media group (n2 = 14). Next, you have
all students complete a depression inventory. Your raw data may look like the following (assume that higher
scores correspond with greater depression):

• Scores for 26 participants in the High-Social-Media group: 7, 5, 6, 8, 10, 7, 6, 6, 6, 9, 10, 10, 7, 10, 6,
9, 9, 9, 5, 8, 6, 9, 6, 9, 6, 5.

• Scores for 14 participants in the Low-Social-Media group: 8, 3, 10, 5, 3, 9, 4, 7, 3, 2, 2, 10, 10, 9

Note that because our samples are unbalanced, we would use a Welch’s test by default.

Let the null hypothesis be HO : X̂1 − X̂2 = 0 in which case the alternative hypothesis would be HA :
X̂1 − X̂2 ̸= 0 (two-sided).

# Assign values to variables
high.soc <- c(7, 5, 6, 8, 10, 7, 6, 6, 6, 9, 10, 10, 7, 10, 6, 9, 9, 9, 5, 8, 6, 9, 6, 9, 6, 5)
low.soc <- c(6, 10, 3, 6, 2, 8, 3, 10, 5, 3, 9, 4, 7, 3)

# Run the test
t.test(high.soc,low.soc,

paired = F, # This isn't necessary since the unequal sample sizes tells R to run Welch's test by default
alternative = "two.sided") # Do you want a one- or two-sided test?

##
## Welch Two Sample t-test
##
## data: high.soc and low.soc
## t = 2.2157, df = 18.647, p-value = 0.03937
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 0.09847118 3.53889146
## sample estimates:
## mean of x mean of y
## 7.461538 5.642857

Mean depression scores for the High-Social-Media group (M = 7.46; SD = 1.75) was statistically
different relative to the mean depression scores for the Low-Social-Media group (M = 5.64; SD
= 2.79) following a two-sample Welch’s test, t(18.6) = 2.22, p = .039. The null hypothesis can
be rejected.

Suppose you wanted to test a one-sided hypothesis: specifically, you suspect the High-Social-Media group
may be more depressed relative to the Low-Social-Media group. In this case we can alter our null hypothesis
to be HO : X̂1 − X̂2 ≤ 0. We can run the same test as before after changing the alternative argument.
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t.test(high.soc,low.soc,paired = F,alternative = "greater") # We want to know whether the FIRST variable is greater than the SECOND

##
## Welch Two Sample t-test
##
## data: high.soc and low.soc
## t = 2.2157, df = 18.647, p-value = 0.01968
## alternative hypothesis: true difference in means is greater than 0
## 95 percent confidence interval:
## 0.3979889 Inf
## sample estimates:
## mean of x mean of y
## 7.461538 5.642857

A one-sided test is less conservative than a two-sided test (it is ‘easier’ to reach significance) but it must
be theoretically justified (e.g., what is the theoretical rationale for expecting High-Social-Media users to be
more depressed?). In any case, we can report our outcomes as follows:

Mean depression scores for the High-Social-Media group (M = 7.46; SD = 1.75) was statistically
greater relative to the mean depression scores for the Low-Social-Media group (M = 5.64; SD =
2.79) following a one-sided two-sample Welch’s test, t(18.6) = 2.22, p = .02. The null hypothesis
can be rejected.

Paired t-test

Use: Measuring the same sample at two time points (hence ‘paired’ or ‘repeated’).

For brevity, we can represent the difference score between the ith estimate and the sample mean as delta, or
Xi − X̂ = X∆. The paired test statistic can be estimated as:

tpaired =
∑

X∆√
n(

∑
X2

∆)−(
∑

X∆)2

n−1

which can be simplified to
tpaired =

∑
X∆

σ∆√
n

where σ∆ is the standard deviation of X∆. Note that there is a single sample size parameter (n) because a
paired test involves a single group of participants.

Similar to Student’s and Welch’s tests, the paired t-test assumes the data was sampled from a normal
distribution. Contrary to independent tests, samples are not independent of each other as each subject
is measured twice. Furthermore, confidence intervals are estimated using joint scores, not of the mean
difference.

If you are interested in learning more about within-subject confidence intervals, have a look at the article by
Cousineau and Pelletier (2021).
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Let’s run through an example for a paired t-test.

Suppose we want to know whether engaging in solitary versus communal prayer influences subjective well-
being. You recruit 20 individuals who you know pray on a regular basis. You ask half of them to pray
in isolation for 30 minutes, then pray together for 30 minutes. You counter-balance this condition (the
remaining half prays together for 30 minutes, than by themselves for 30 minutes). After each prayer session,
you ask participants to complete a subjective well-being scale. You want to test the null hypothesis that
there is no difference of praying in isolation versus communally in regards to subjective well-being.

Imagine we have collected the well-being scores for 20 participants after they prayed in isolation (3, 2, 3,
5, 2, 6, 2, 1, 4, 1, 1, 5, 5, 1, 5, 5, 4, 5, 2, 1) and after they prayed communally (5, 2, 1, 5, 4, 6, 6, 3, 1, 3, 8,
6, 7, 1, 6, 7, 1, 2, 4, 3). We can run a two-sided paired t-test to determine whether the mean difference in
well-being scores across the two conditions is statistically different from the null.

# Set up data
isolate <- c(3, 2, 3, 5, 2, 6, 2, 1, 4, 1, 1, 5, 5, 1, 5, 5, 4, 5, 2, 1)
communal <- c(5, 2, 1, 5, 4, 6, 6, 3, 1, 3, 8, 6, 7, 1, 6, 7, 1, 2, 4, 3)

# Run the test (this time with 'paired = TRUE')
t.test(isolate, communal, paired=T, alternative="two.sided")

##
## Paired t-test
##
## data: isolate and communal
## t = -1.6446, df = 19, p-value = 0.1165
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -2.0453904 0.2453904
## sample estimates:
## mean of the differences
## -0.9

The subjective well-being of 20 students after praying in isolation (M = 3.15; SD =1.76) and
communally (M = 4.05; SD =2.28) prayer was not significantly different, t(19) = -1.64, p = .116,
d = -0.37. The null hypothesis can be retained.
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Introducing effect sizes

• An effect size (ES) describes the magnitude of an observed effect and has primarily three purposes:

• They allow interpretation of data - researchers can assess whether a statistical effect may be practi-
cally ‘meaningful’.

• One can compare between studies which incorporate effect sizes (e.g., assess reliability of similar
procedures, run meta-analyses).

• ES’s can be used for inference tests - you can check the viability of null hypotheses and generate
confidence intervals to determine the precision of your estimate - the narrower the interval, the more
precise is your ES.

• Not all ES’s are the same - some are more biased than others, some are sensitive to sample size and
become increasingly variable with larger samples (and/or sample inequality). Three properties of a
good ES estimate are:

– The ES is unbiased (the distribution of the ES is centered along the true population parameter).

– The ES is efficient if it has less variance than it’s competitors.

– The ES is consistent if larger sample sizes lead to a convergence of the ES with the true
population parameter.

A rough approximation of ‘meaningfulness’ is the magnitude of the effect size (d stands for ‘standardized
difference score’).

• d ≤ 0.3 - a small effect (not very meaningful)

• .4 ≤ d ≤ .7 - moderate effect

• d ≥ .8 - a large effect (practically meaningful)

Effect size formulae (Cohen’s d, Glass’s ∆ and Hedge’s g)

• When contrasting across large (n>20) and balanced samples, the conventional effect size to report
is Cohen’s d for samples, which can be estimated as:

d∗
s = X̂1 − X̂2√

SD2
1+SD2

2
2

Cohen’s d-score tells us whether a statistically significant effect is practically meaningful. Note that Cohen’s
d∗

s assume samples have equal variance.

• If, homogeneity of variance can be assumed but samples are unbalanced, we may estimate can adjust
the pooled standard deviation accordingly:

ds = X̂1 − X̂2

SDpooled
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where

SDpooled =

√
SD2

1(n1 − 1) + SD2
2(n2 − 1)

n1 + n2 − 2
. Do not pool standard deviations if the assumption of equal variances has not been met!

• Cohen’s effect size is reliable when sample sizes are large (e.g., n ≥ 20). For smaller samples, d∗
s can

produce biased outcomes even if samples are otherwise balanced and there is homogeneity of variance.

• When variances are not homoscedastic (e.g., sample parameters have notably different standard
deviations), an alternative approach for estimating effects is Glass’s ∆.

• Instead of a pooled error term, the mean difference is divided by the standard deviation of a chosen
group/condition (the ‘control’ group). So

∆Glass = X̂T reatment − X̂Control

SDControl

.

• In a paired design, the ‘control’ group is typically the pre-intervention condition. In an independent
design, the ‘control’ group is typically the non-intervention condition.

• Because it is not always possible to designate a control group during a contrast (e.g., when comparing
the effectiveness of two types of therapy on depression), Glass’s ∆ may not be applicable.

• It is also not recommended to use Glass’s ∆ when variances are homogeneous and/or there is no clearly
specifiable ‘control’ group.

• When sample sizes are smaller than 20 and/or unbalanced, a recommended estimator of sample effect
size is Hedge’s gs, which corrects for small samples.

gs = ds × (1 − 3
4N − 9)

where N is the total sample size (n1 + n2 = N).

However, both Cohen’s d and Hedge’s g assume homogeneity of variance, which is not always the case across
real-world scenarios.

• It has been recommended to use a variation of Hedge’s formula (g∗
s ) that does not involve pooling the

standard deviation when comparing between independent samples for four reasons:

– Does not rely on the homogeneity of variance assumption (as error is unpooled).

– Ease of interpretation (roughly equivalent to Cohen’s ds).

– ES variance remains consistent (even when normality is violated)/
– Demonstrates convergence, even when variances are heterogeneous.

It is recommended to estimate Hedge’s bias-corrected g∗
s score whenever running Welch’s tests.

g∗
s = d∗

s × N − 3
N − 2.25 ×

√
N − 2

N

where d∗
s is based on Cohen’s formulation described earlier.

11



• If you are interested in learning more about when and why other effect size measures may be used, you
can go through the resources here
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Table 1: Anxiety scores before and after intervention for 30 undergraduate students
Before intervention After intervention
M = 11; SD = 2.5 M = 8.3; SD = 3.2

Note:
These are simulated scores that do not refer to any actual persons.

Activity

For each question, describe the steps you took to reach your outcome.

1. You have been provided IQ scores of 20 USP students. These are as follows:

90, 93, 108, 94, 96, 101, 89, 95, 87, 100, 88, 107, 92, 105, 85, 110, 86, 106, 103, 104

. You know that the average IQ for the population is 88. Is the mean IQ of the 20 USP students
significantly different from the population mean?

2. You have been given the IQ scores of 20 FNU students, which are as follows:

83, 80, 103, 98, 85, 100, 88, 90, 95, 104, 81, 96, 92, 93, 101, 97, 102, 86, 87, 84

Is the mean difference in IQ between the 20 FNU students and 20 USP students statistically different
from the null? If you find a statistically significant effect, report the effect size (Cohen’s ds).

3. You want to test whether a new psychotherapeutic procedure is effective in reducing anxiety across a
sample of 30 University students. You record the anxiety scores of the 30 students before and after
undergoing psychotherapy. The mean and standard deviations of the sample before and after treatment
is provided near the top of this page.

Compute the effect size using any one of the three procedures discussed earlier (Cohen’s d, Hedge’s g, or
Glass’s ∆). Provide reasons for selecting the procedure that you did. Mention whether the difference is
practically important based on the magnitude of the effect.

Submit your responses through the Moodle dropbox.
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