
PS303: Week 5

pp.358-363; 370-374

Categorical data

• Our previous discussion involved how to assess whether observed distributions of binary data (suc-
cesses relative to failures) varied statistically from expected distributions using p-values generated
from binomial tests.

– Useful for data that can be split into ‘successes’ and ‘fails’.
– When observations vary from expectations with p < .05, the effect is considered statistically

significant.

• Not all categorical data is binary however (e.g., seasons of the year, personality traits, political ideolo-
gies). Non-binary categorical data can be tested against null hypotheses using Chi-Square (χ2) tests.
Some versions of this are:

– χ2 test of independence, which measures whether measured variables are statistically independent
of one other.

– χ2 test of goodness-of-fit, which measures ‘how close’ observed data is relative to expected data
(expected patterns can include multiple probabilities, implied by the null HO, which must add up
to 1).

– Fisher’s exact test for estimating differences across samples with low sample size (e.g., if any cell
in your data structure is less than 5, do not estimate χ2).

– McNemar test for paired categories (since χ2 is a statistic for independent categories)

• Remember : NHSTs inform you how likely the observed data would be if the fictional null
hypothesis is true. NHST p-values cannot tell us whether the alternative hypothesis is ‘true’.
It’s good practice to include power estimations and effect sizes to increase the interpretability
of our findings

χ2 test of independence

Are two categories statistically related to each other?

• You’ve been watching rugby matches between Namosi and Serua teams for the past year. You sus-
pect that the weather may be be disproportionately influencing one team’s performance over the other.

• Your research hypothesis is that the Namosi and Serua teams are variably influenced by alternating
weather patterns. Your statistical HO is that there is no significant relationship between the two
categorical variables (Weather ~ Location).

You have collected the following data:
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Weather Namosi Serua
Sunny 23 26
Raining 36 19
Windy 44 68

We can run a χ2 test of independence to determine whether the difference in wins between Namosi and Serua
is statistically significant.

• HO : Namosi and Serua are equally likely to win independently of weather conditions
• HA : Namosi and Serua wins are influenced by weather conditions

3 steps to running the test on R. . .

# Step 1: Bind data together and assign to a variable
V <- cbind(c(23,36,44), # Namosi

c(26,19,68)) # Serua

# Step 2: Name dimensions and their individual
dimnames(V)<-list(weather=c("sunny","raining","windy"), # Row identifiers in 'V'

location= c("Namosi","Serua")) # Column identifiers in 'V'

# Step 3: Run chi-square test
chisq.test(V)

##
## Pearson’s Chi-squared test
##
## data: V
## X-squared = 10.14, df = 2, p-value = 0.006283

We can report this as follows:

A χ2 test of independence indicated a significant association between location and weather, χ2(2, n = 216)
= 10.14, p = .006. Inspection of findings revealed Serua was more likely to win when windy, whereas Namosi
was more likely to win when raining.

Across a test of independence, we determine whether sample parameter distributions are associated with
each other. A non-significant difference implies that the tested distributions vary independently of each
other. χ2 tests are always one-sided - the larger the χ2 estimate, the greater our chances of rejecting the
null (which describes our expected distribution - see p. 358 for details).

χ2 test of goodness-of-fit

• Across a goodness-of-fit (GOF) test, we want to know whether sample distributions vary relative to an
expected population distribution. In the first example below, we assume wins are equally likely for the
null hypothesis. Later on, we describe how to alter our parameters if we interested in non-symmetrical
null hypotheses (e.g., some regions may be expected to produce greater wins/losses - more on this in
a moment).
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How closely do observed sample distributions match (‘fit with’) expected population distribu-
tions?

• You have been hired to scout new talent for the Fijian 7s from local teams in the Naitasiri, Namosi,
Rewa, Serua and Tailevu regions. However, you only have time to visit a couple of regions before
making your recommendations to the team manager. The only information provided to you is the
following:

– The total games won by all the teams together (NT otal = 200).

– How many games each region has won (see table below).

Assuming each region is equally likely to win, we can expect each team should win NT otal

NT eams
= 200

5 = 40
games. Can you use this information to determine which region(s) may be worth visiting?

Regions Observedwins Expectedwins

Naitasiri 36 40
Namosi 38 40
Rewa 41 40
Serua 40 40
Tailevu 45 40

We can use a goodness-of-fit test to determine whether the observed distribution of games won varies
from your expected distribution.

As there are five regions, we should have five probabilities which should sum up to 1 (
∑k=5

i=1 (Pi) = 1).
If we assume a symmetrical null hypothesis (all regions are equally likely to be associated with wins),
the probability for any single region (Pi) winning a game would be 0.2 (because Pi=1 + Pi=2...Pi=5 = 1).
The expected frequency of wins can be estimated by multiplying the probability with the total frequency
(.2 × 200 = 40).

Manually estimating goodness-of-fit

• We subtract our expected frequency of games won (Expectedwins, or Ewins) from the observed/actual
number of games won (Observedwins, or Owins) to produce a difference score.

• We square this difference to remove all negative signs, then divide the difference by the expected wins
to produce error terms (final column).

• The latter represents ‘how much’ our null HO was in error with respect to predicting the outcome of
each region’s performance.

Regions Owins Ewins Owins − Ewins (Owins − Ewins)2
(Owins −
Ewins)2/Ewins

Naitasirii=1 36 40 -4 16 .4
Namosii=2 38 40 -2 4 .1
Rewai=3 41 40 1 1 .025
Seruai=4 40 40 0 0 0
Tailevui=5 45 40 5 25 .625
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We can report the χ2 GOF statistic by adding up each ith error across the total (k) number of categories,
giving us χ2 = .4 + .1 + .025 + 0 + .625 = 1.15.

The formula can be summarized as follows:

χ2 =
∑ (Observedi − Expectedi)2

Expectedi

where i represents each value iteration.

Let’s run the same procedure in R. . .

chisq.test(x = c(36,38,41,40,45), # Vector with observed frequencies
p = c(40,40,40,40,40), # Vector of expected frequencies
rescale.p = T) # Tell R to convert expected frequencies into probabilities

##
## Chi-squared test for given probabilities
##
## data: c(36, 38, 41, 40, 45)
## X-squared = 1.15, df = 4, p-value = 0.8863

Is this large enough to reject our null hypothesis, which claimed each team had an equal probability of
winning (so HO : Pwins = .2 & HA : Pwins ̸= .2?). Since p > .05, we cannot reject HO. We can report
these results as follows:

Out of 200 games won by regional teams, Naitasiri won 36 games, Namosi won 38 games, Rewa won 41
games, Serua won 40 games and Tailevu won 45 games. A chi-square goodness of fit test indicated the
probability of winning a rugby game did not statistically vary between regions, χ2(4) = 1.15, p = .89. The
null hypothesis (that all regions were equally associated with wins) is retained.

For the sake of illustration, how would we alter the probabilities if we assumed (for whatever reason) that
twice the number of games are likely to be won in Naitasiri relative to remaining regions?

chisq.test(x = c(36,38,41,40,45),
p = c(80,30,30,30,30), # Note the altered frequencies relative to our updated null
rescale.p = T) # Think about what a rejection/retention of the null here may imply

##
## Chi-squared test for given probabilities
##
## data: c(36, 38, 41, 40, 45)
## X-squared = 41.2, df = 4, p-value = 2.443e-08

How is χ2 interpreted?

• Remember that every test statistic follows a distribution. Knowing the specific distribution tells us
where the observed statistic stands relative to some critical value.

• A large χ2 statistic implies that the null hypothesis did not do a good job predicting the data, meaning
we can reject the null.

• p-values indicate whether the χ2 estimate is less than (p > .05 - retain HO) or more than (p < .05
- reject HO) the critical value. Larger test statistics imply greater distance from the center of the
distribution, meaning the null is less likely (corresponding with a smaller p-value).
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The degrees of freedom (df) for estimating a χ2 distribution is determined by k − 1 where k is the total
number of categories being measured.

Effect sizes

• Recall that we report effects to illustrate the magnitude of observed effects (also described as practical
significance)

• For chi-square tests, Cramer’s V is a typical measure of effect size. We can estimate V with known
parameters:

V =

√
χ2

N(k − 1)

# Computing Cramer's V
chi <- 1.15 # Value for Chi-square
n_tot <- 200 # Total sample
k <-5 # Total Number of groups
cram_v <- (chiˆ2/n_tot*(k-1))ˆ.5 # Re-writing the formula in R
cram_v # Print

• Inputting our previous values (χ2 = 1.15; N = 200; k = 5) generates V = 0.16, which seems small
(interpret the effect size as you would a correlation coefficient). This is not unexpected since our test
was non-significant!

Assumptions of a χ2 test

• Expected frequencies (for each cell) should be greater than 5.

• Observations should be independent of each other.

If 20% of data cells contain 5 or fewer iterations, we can use Fisher’s exact test. Alternatively, if
we want to test across paired categories, we may use McNemar’s test.
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Fisher’s exact test

You suspect that facebook-users are more depressed relative non-users. You distribute a survey to 14 friends
to measure whether they have depression and use facebook. You create a table with your collected data:

Depression Facebook user Not a Facebook user Total
Present 7 1

∑
Row1 = 8

Absent 3 3
∑

Row2 = 6
Total

∑
Col1 = 10

∑
Col2 = 4 N = 14

Because some of the cell counts are less than 5, a conventional χ2 test may be unreliable. Instead, Fisher’s
exact test can determine if there is an association between the variables present (similar to a test of inde-
pendence but for a small sample) by ‘directly’ estimating a p-value (no test statistics involved).

## Running Fisher's exact test

# Step 1: Combine cells into columns and bind them
V1 = cbind(c(7,3),c(1,4))

# Step 2: Name dimensions + levels
dimnames(V1) = list(Depression = c("Yes","No"),Facebook = c("User","Non-user"))

# Step 3: Run the test
fisher.test(V1,alternative="two.sided")

##
## Fisher’s Exact Test for Count Data
##
## data: V1
## p-value = 0.1189
## alternative hypothesis: true odds ratio is not equal to 1
## 95 percent confidence interval:
## 0.5027782 521.2731861
## sample estimates:
## odds ratio
## 7.876343

From the outcome viewed, we can claim that the null hypothesis may not be rejected.

The formula for Fisher’s exact test is

p = (a + b)!(c + d)!(a + c)!(b + d)!
a!b!c!d!N !

where (a, b, c, d) are the cell values (so a = 7, b = 3, c = 1, d = 4) and N is the total frequency (N = 14). We
can re-write the above as follows

p = (7 + 3)!(1 + 4)!(7 + 1)!(3 + 4)!
7!3!1!4!14! = .1189

McNemar Test for symmetry

All our tests so far have relied on the assumption of independence between samples. What if you
are collecting categorical data from the same sample over repeated iterations?
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You want to set up an information campaign across USP students to reduce Styrofoam littering. You decide
to show a video by a conservationist philosopher on the importance of beauty and oikophilia (love of one’s
home) to see if that can reduce littering behavior. Namely, you want to test whether realizing the value of
natural beauty can help reduce littering behavior.

To test this idea, you recruit 58 students and monitor their littering behavior for one week. You then show
them the video, then monitor their littering behavior during the following week. You want to know whether
there is a difference (asymmetry) in littering instances before and after the video. As you are looking at
behaviors of the same group across multiple time points, your samples are not independent of each other so
you cannot run a conventional χ2 test.

Do you litter? Before video After video
Yes 26 16
No 32 42

For paired nominal/categorical data, we can run Mcnemar’s test for symmetry. We will examine the null
hypothesis that the littering instances are not different (symmetrical) before and after watching the video.

## Running McNemar's test for symmetry

# Step 1: Prepare the data
V2 = cbind(c(26,32),c(16,42))

# Step 2: Naming dimensions and their levels
dimnames(V2) = list(Litter = c("Yes","No"), Time = c("Before video","After video"))

# Step 3: Run the test
mcnemar.test(V2)

##
## McNemar’s Chi-squared test with continuity correction
##
## data: V2
## McNemar’s chi-squared = 4.6875, df = 1, p-value = 0.03038

The test statistic is significant (because p = .03). We are now justified in estimating Cramer’s V to assess
whether the statistically significant difference is practically important.

# Forumula: chiˆ2/n_tot*(k-1))ˆ.5
cram_v2<-(4.6875/58*(2-1))ˆ.5

# Print (rounded to 2 decimal places)
round(cram_v2,2)

## [1] 0.28

A McNemar test of symmetry indicated the number of participants who reported not littering after watching
the video (NAfter/Y es = 42) was statistically different, χ2(1) = 4.69, p = .030; VCramer = 0.28, relative to
participants who did not litter before watching the video.
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Lab Activity

Copy the first column of the table in slide 4, and answer the following:

1. Enter a new series of observed wins (Owins) for the five regions (Naitasiri = 28 wins, Namosi = 31
wins, Rewa = 37 wins, Serua = 59 wins, and Tailevu = 45 wins). Assume that each region still has
an equal probability of winning (p = .2 for each team). Run a chi-square goodness of fit test and
report whether the newly observed distribution of wins retains or rejects the null hypothesis. Ensure
to construct a table similar to the one shown on slide 4.

2. Retaining the number of (Owins) from Question 1, suppose you receive new information that alters
your expectations of which teams are likely to win. Specifically, you learn that the last cyclone washed
away the rugby gear of the teams in Rewa and Namosi. You consequently expect teams in Rewa and
Namosi would have won fewer matches relative to remaining regions as they had less equipment. You
speculate that the expected number of wins (Ewins) for Rewa and Namosi will be 10 each. This means
that the Ewins for the three remaining regions will be 60 each (since the total win count remains 200
games). Run a chi-square goodness of fit test and report whether the new expected distribution of
wins influences your outcomes. Make sure to update your probability vector (p = c(num1, num2,
num3...)) before running the chi square.

Remember to report the effect size for any chi-square tests that are statistically significant (p < .05). Submit
your completed activity in the dropbox on Moodle.

8


	Categorical data
	\chi^2 test of independence
	\chi^2 test of goodness-of-fit
	Manually estimating goodness-of-fit
	How is \chi^2 interpreted?
	Effect sizes
	Assumptions of a \chi^2 test
	Fisher's exact test
	McNemar Test for symmetry
	Lab Activity

