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Hypothesis tests

• Recurring patterns allow us to predict future occurrences with high likelihood. In the frequentist
approach, pattern outcomes are binary. Some patterns are obvious. . .

– The sun rises in the east
– Apples fall from trees
– Asthmatic children wheeze

• Others may be less so. . .

– Engaging extensively with social media facilitates depression
– Focusing on identity can devalue individual merit
– Increasing minimum wage correlates with job losses across the underprivileged

Statements about how the world operates can be formulated into Research Hypotheses (RH).
Briefly, a RH involves claims about models (in nature) whereas a Statistical Hypothesis (SH)
makes claims about data. The former are scientific claims, the latter are claims about the data.
As a researcher, your task wil be to derive RH’s and test them using statistical hypotheses.

Ideally, we should construct RHs to be relational in order to render them testable (e.g., given x, then y; if
no x, then no y). The SH reformulates this question in a manner amenable to statistical testing (e.g., is the
observed frequency of y in the presence of x more than what would be expected by chance?)

Understanding p-values

• Statistical tests deal with mathematical relationships between parameters of interest (e.g., comparing
between sample estimates to identify whether one group is significantly different from another)/

• Null hypothesis significance testing (NHST) involves testing whether observed data vary significantly
from hypothetical estimates

• Conventional NHSTs do not ‘prove’ any particular research claim - rather, NHST tells us whether we
can retain/reject a null hypothesis (HO : There is no effect).

• Consider the following examples of a RH and an associated SH:

– Using social media reduces negative well-being

– µ1 − µ2 = 0 (null hypothesis)
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https://www.youtube.com/watch?v=Wuf0-x9Pbu4&ab_channel=FightMediocrity
https://www.youtube.com/watch?v=5ZFNc2Zeaaw&ab_channel=ColemanHughes
https://www.youtube.com/watch?v=9aCpaON5NyE&ab_channel=LearnLiberty


• To test this claim, we can imagine recruiting two groups of participants with varying patterns of social
media usage (let’s classify them as Users and Non-Users) and ask them to complete a well-being survey.

Hypotheses Examples
Research Hypothesis Extended usage of social media negatively impacts well-being

Ho : µ1 − µ2 = 0 Mean well-being of media users = non-media users
H1 : µ1 − µ2 > 0 Depression of media users ̸= Depression of non-media users

Frequentist tests assess how viable the null (and fictional) Ho is in explaining the observed data. If the
data is considered ‘too extreme’ under the assumption that the null is true, then it is deemed statistically
significant. The formal threshold of significance (at least in much of Psychology) is (p < .05), which can
be interpreted as a less than 5% chance of observing the present data assuming the null hypothesis is true
(implying) we can reject the null hypothesis (but not make any claims about the alternative hypothesis just
yet!).

Controlling for Type-1 and Type-2 error

• Your goal as a researcher and analyst is to reduce the likelihood of making incorrect decisions. The
p-value helps in identifying whether an effect is ‘really’ there (as opposed to being a false positive or
false negative) but it is not a complete solution. A p-value threshold that is too strict (e.g., p <.001)
can reduce Type-1 error while inflating Type-2 error. Alternatively, a value that is too lenient (e.g., p
<.1) can reduce Type-2 error while inflating Type-1 error.

• Understanding the two types of error:

– Avoiding false positives: Rejecting your Ho when the data actually supports the null, also
called Type-1 error (e.g. accepting a medical treatment as valid despite the treatment having
no effect). Example of Type-1 error: homeopathy effectiveness?.

– Accepting false negatives: Accepting the null hypothesis when the data actually supports Ho’s
rejection (e.g., rejecting a medical treatment as invalid despite the treatment having an effect).
Example of Type-2 error: HCQ ineffectiveness?.

Retain Ho Reject Ho

Ho is true Correct decision Type 1 Error
Ho is false Type 2 Error Correct decision

Assuming Ho : DepressionMedia = DepressionNonMedia, what are some possible Type-1 or
Type-2 errors that may be confounding the question? Have a look at this short video for further
discussion of this topic.

Non-statistical strategies for dealing with error

Imagine yourself as a judge in 10th century England who has to identify whether Johnny stole a horse.
Suppose you have no witnesses to call on - what would be a strategy to discover whether Johnny is guilty?
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https://www.nccih.nih.gov/health/homeopathy
https://hcqmeta.com/
https://www.youtube.com/watch?v=a_l991xUAOU&ab_channel=365DataScience
https://aeon.co/ideas/why-the-trial-by-ordeal-was-actually-an-effective-test-of-guilt


You may falsely convict someone innocent (Type-1 error), or you may incorrectly exonerate someone guilty
(Type-2 error). To what degree are you willing to accept freeing the guilty (Type-1 error) versus punishing
the innocent (Type-2 error)?

Let Johnny go Johnny undergoes the trial
Johnny is innocent Correct decision Type 1 Error
Johnny is guilty Type 2 Error Correct decision

While a bit extreme, ‘trials-by-ordeal’ may have been somewhat effective in controlling for Type-1 and
Type-2 error!

Significance and Power

Since it is nearly impossible to reduce error rates to 0, what are some acceptable ranges for Type-1/2 error?

• In psychological research, we are typically satisfied with a 5% Type-1 error rate. We are willing to
accept that 5% of observed data may incorrectly signify an effect when there may be none in reality.
Technically, we can declare prior to our study that our α error rate is constrained at 5%. In other
words, α = .05 is our threshold for statistically retaining/rejecting the null.

• A low Type-2 error rate (β) is also desirable. For example, we may be willing to accept a 10% (β = .1)
false negative rate. The parameter of interest here is power (1 − β), which describes the probability
that a null hypothesis is correctly rejected when an alternative is true.

• For example, we can claim that our test has 90% power (1 − β = .9) and a 5% α error rate, implying
our test has a 5% chance of incorrectly rejecting the null and a 10% chance of incorrectly accepting
the null.
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Retain Ho Reject Ho

Ho is true 1 − α: Likelihood of correct Ho retention α: Type-1 error
Ho is false β: Type-2 error 1 − β: Power of selected test

Keeping your β’s small (about .1) and your α’s even smaller (about .05) facilitates reasonably robust infer-
ences without unreal sampling demands.

Why not set up a study with α = .001 and β = .99 to further minimize the plausibility of Type-1 and Type-2
error? Because reducing error probability is inversely related to sampling size. The smaller the error con-
straint, the larger the sample required (at times reaching in the thousands). However, increasing sensitivity
(through increasing sample size) can enable detection of (even) small effects as statistically significant, but
with low practical significance (e.g., differences in kokonda consumption between Suva and Lautoka resi-
dents). The decision to constrain error has to be carefully considered prior to running your study (though
α = .05|β = .90 appears to be a general heuristic).

Interpreting outcomes from binomial experiments

Because binomial tests are generally the ‘simplest’ hypothesis test, we can explore some hypotheses in relation
to binary coin flips. . .

You have been asked to test the fairness of a coin before the start of a rugby season. You remember
from your statistics class that the ‘true population probability’ (of seeing Heads) can be determined from
flipping the coin 1000’s of times (notwithstanding the wear-and-tear). However, as this may not be practical,
we can a binomial significance test to determine whether P(Heads), or the probability of ‘successes’,
significantly varies from a null hypothesis.

A fair coin may be one where we expect that heads/tails will show up with roughly equal probabilities
after enough flips. Formally, our hypothesis is that the probability of viewing heads is 50%, or P (H) = .5.
Suppose we flip the coin 50 times and record 38 heads. Can we make a decision?

• Assuming probability of heads/successes is represented by θ, we can formally describe our hypotheses
as follows:

– H0 : θ = .5

– HA : θ ̸= .5 (two-sided)

We can use R’s built-in function for running a two-sided binomial test (since we do not care at the moment
whether the bias is towards Heads or Tails).

binom.test(x=38, # Assign the number of 'successful' trials to 'x'
n=50, # Assign the number of 'total' trials to 'x'
p=.5, # Probability of success (null hypothesis)
alternative = "two.sided", # Two-sided or one-sided test?
conf.level = .95) # 95% Confidence Interval

##
## Exact binomial test
##
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## data: 38 and 50
## number of successes = 38, number of trials = 50, p-value = 0.0003059
## alternative hypothesis: true probability of success is not equal to 0.5
## 95 percent confidence interval:
## 0.6183093 0.8693901
## sample estimates:
## probability of success
## 0.76

A two-sided binomial test indicated that the number of heads observed NHeads = 38 relative
to the total number of flips (NF lips = 50) was statistically different from a chance estimate,
θ = .76(CI95 : 0.62to0.87), p = .0003. We can reject the null hypothesis which claimed the coin
was fair.

Two-sided vs one-sided tests

• Our earlier test asked whether θ (probability of success) was different from a chance estimate. We ran
a two-sided test as we did not care about the direction of the difference.

• Alternatively, we could have run a one-sided test if we had prior reason to do so. This could involve
asking whether P (H) is greater than would be expected by chance (θ > .5). We could also inquire
whether P (H) may be less than would be expected by chance (θ < .5).

test1 <- binom.test(x=38,n=50,p=.5,conf.level = .95,alternative = "greater")
test2 <- binom.test(x=38,n=50,p=.5,conf.level = .95,alternative = "less")

After running the tests and assigning the outputs to variables, we can call those directly

test1

##
## Exact binomial test
##
## data: 38 and 50
## number of successes = 38, number of trials = 50, p-value = 0.0001529
## alternative hypothesis: true probability of success is greater than 0.5
## 95 percent confidence interval:
## 0.6403443 1.0000000
## sample estimates:
## probability of success
## 0.76

• Our first test (where HA : θ > .5 and HO : θ ≤ .5) produces a p-value of 0.000152932, which we can
summarily present as <.001. The results suggest we can reject the one-sided null hypothesis that
the observed distribution is less than would be expected by chance (because p < .05).

test2
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##
## Exact binomial test
##
## data: 38 and 50
## number of successes = 38, number of trials = 50, p-value = 1
## alternative hypothesis: true probability of success is less than 0.5
## 95 percent confidence interval:
## 0.0000000 0.8552818
## sample estimates:
## probability of success
## 0.76

• Our second test (where HA : θ < .5 and HO : θ ≥ .5) produces a p-value greater than .05, implying
we should retain the null hypothesis that the observed distribution is greater than would be expected
by chance (because p > .05).

Limitations of p-values

While p values are useful for retaining/rejecting null hypotheses, there cannot resolve research hypotheses.
This is because (i) p values do not tell us whether a statistical effect is practically significant, and (ii)
a statistically significant difference does not specify the precise population parameter with any detail (how
much of a difference can we expect in the actual population?). Recall that our goal was to determine whether
the coin is fair. Although we found statistically significant differences based on a α = .05 threshold, were
the differences large enough to be practically meaningful?

NHSTs report p-values ranging from .001 ≤ p ≤ .999, which tell us how likely the observed pattern would
be assuming HO is true. In psychological research, observing p ≤ .05 implies the observed pattern would be
‘extremely unlikely’ (less than 5% of the time) if HO was true. Alternatively, observing p > .05 is typically
interpreted as insufficient evidence for rejecting the null. Critically, neither claim tells us about the likelihood
of the alternative hypothesis.

Later in the course, we will introduce effect sizes as estimators of practical significance. Along with confi-
dence intervals and standard error as range estimates (identifying ‘where’ the true population parameter
resides), effect sizes will help illuminate whether there are ‘real’ differences between/within populations of
interest.

Closing statements

• Frequentist tests are typically run with sample parameters, meaning our outcomes typically explain
sample behaviors. However, we are typically interested in finding out about population parameters,
which sample parameters may not necessarily correspond to.

• A statistically significant effect (p<.05 ) permits rejection of the null hypothesis, not acceptance of the
alternative hypothesis.

• Statistical effects do not tell us about the practical meaningfulness of an effect, which (say) effect
sizes can. For example, both θ1 = .53 and θ2 = .76 may be ‘significantly’ different from a null θo = .5
estimate, but the latter estimate corresponds with a larger effect.

• Statements of significance are binary - either an effect is significant or is not according to some
pre-established threshold (e.g., p < .05)
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Statistical significance? Big Effect Small Effect
p < .05 A real difference that is

important
A real difference that might not be
important

p > .05 No effect No effect

Running binomial tests manually

When you are interested in a binary outcome parameter and have an expectation of future probability of
an outcome (e.g., P (H) = .5 for a fair coin), a binomial test checks whether the observed pattern varies
(significantly) from the expected pattern. Binomial tests work with binary distributions, which cannot be
normal.

Imagine we flip a coin 10 times (n = 10) and view 6 heads (x = 6). This may follow the sequence:
H − T − T − T − H − H − H − H − T − H. We want to test is whether our observed distribution of heads
( x=6

n=10 ) varies from our expected distribution (P (H)Expected = .5). So we want to know if

HO : P (Expected) = P (Observed)

.

The parameters necessary for estimating binomial probability distributions are:
n - Total number of independent trials (n = 10)
x - Total successes (x = 6)
p - Expected probability of x successes (p = .5)

We may then estimate the probability of viewing x successes across n trials given an expected probability p.

P (Heads) = n!
x!(n − x)! × px × (1 − p)n−x

Let’s enter the parameters provided.

P (H) = 10!
6!(10 − 6)! × .56 × (1 − .5)10−6

which gives us

P (H) = 10 × 9 × 8 × 7 × 6 × 5 × 4 × 3 × 2 × 1
6 × 5 × 4 × 3 × 2 × 1(4 × 3 × 2 × 1) × .015625 × .0625 = .205

We can check our results by generating a probability densitity distribution in R. . .

dbinom(x=6,size=10,prob=.5) # Probability DENSITY (d) of binomial distribution

## [1] 0.2050781

Suppose we want to know the probability of 6 or fewer Heads. . .

pbinom(6,10,.5) # Cumulative PROBABILITY (p) of binomial distribution

## [1] 0.828125

What about the probability of 6 or more Heads?
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1-(pbinom(5,10,.5)) # Remember, all P's add up to 1

## [1] 0.3769531

1. The probability of getting 6 heads exactly; P (H = 6
10 ) = .205.

2. The probability of getting 6 or fewer heads exactly; P (H ≤ 6
10 ) = .828.

3. The probability of getting 6 or more heads exactly; P (H ≥ 6
10 ) = .377.

Lab activity

We have discussed how to run and report binomial tests, which investigates whether observed distributions
from a binomial category (e.g., Heads vs Tails; Yes vs No; Big vs Small) matches some pre-defined
probability distribution. Although we constrained our discussion to coin flips, binomial proportion tests can
theoretically apply to any binary category. For this week’s lab activity, you will run three binomial tests
then report your findings in an appropriate format. For each test, report the observed proportion estimate
(θ), the Type-1 error rate (p-value) and the 95% confidence interval. Also report whether your test was
one-sided or two-sided, and whether your findings retain/reject a null hypothesis. Include the code used
during binomial tests

Q1. You flip a coin 89 times and view 46 heads. You suspect that the coin may be slightly biased towards
heads. To test your claim, you run a binomial test of proportions against a null hypothesis of P (H) = .50,
meaning you are assuming the true rate of the coin would be 5 heads for every 10 flips. Does the observed
proportion of heads significantly vary from the null?

Q2/Q3. An immigration officer has been accused of bias against immigrants from Tonga, while being in
favor of immigrants from Vanuatu. Your task as an enforcement officer is to check whether these claims can
be statistically supported. You are provided the following data:

Origin
Total
immigrants

Accepted
Immigrants Accusation Alternative Hypotheses

Tonga 400 161 Bias against Tonga HA : θ ≤ .5 |
Vanuatu 160 91 Bias towards Vanuatu HA : θ ≥ .5 |

Report whether each accusation is statistically supported or not. Show your work.
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