
Week 3| Probability distributions

pp. 275 - 300, 306-314, 320-322

Frequentist definitions of probability

Long-run (frequentist) probability

• Based on the ‘true’ (as opposed to ‘subjective’) probability of an event
• Values which are fixed and can be replicated by others: what you see is what what you get.
• The more data we have, the closer we can approximate the ‘true’ values of a population.
• Frequentist statements provide binary outcomes: something is the case, or it is not.

• Assumes probabilities reflect objective realities ‘out there’ and should be fixed. An alternative approach
(Bayesian statistics) assumes probabilities are fundamentally ‘subjective’ and may be altered in light
of incoming information.

We will focus on frequentist statistics over this course for the following reasons:
1. Frequentist statistics are more commonly used and understood.
2. Justifications for subjective probablities do not have to be provided (e.g., “I believe. . . ” vs “It was
shown. . . ”).
3. Bayesian methods provide variable outcome parameters whereas frequentist methods provide fixed out-
comes.

• In practice, we never have ‘infinite’ trials and thus can never fully approximate what is the ‘true’
population parameter.

• Frequentist probabilities reflect global (not local/contingent) probabilities. For example, claiming that
a coin will display Heads (H) 40% of the time does not mean that the next flip has a 40% chance of
yielding Heads. Instead, if the coin is flipped an ‘infinite’ amount of times (or at least many, many,
many times), than 40% of the flips will be Heads.

Binomial data

We discuss how ‘objective’ probabilities are contingent on a ‘sufficiently’ large sample using simulated coin-
flip data. Coin flips provide binary outcomes (either H or T) which can be readily interpreted in terms of
probabilities. Flipping coins can produce Heads or Tails, meaning the responses are nominal, not continuous
(A coin-flip cannot result in .8 Heads or .2 tails). Data with two nominal categories are called binomial.

Suppose out of five coin flips we view the sequence HHTTH - in this case, the objective proba-
bility of Heads out of five coin flips is 3

5 or 0.6. Our demonstration is not restricted to coin flips
only - any binary outcome parameter may be described in this way (e.g., given the distribution of
males and females in a classroom to be MMFFMFMMFFFM, we can report the probability
of females out of 12 students is 6

12 , or 0.5).
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R has a built-in function for generating random samples of values from various distributions - the ones we
will generally use across the majority of analyses are binomial (categorical), as well as normal, t-statistic, χ2

and F -statistic distributions (which are all continuous). We will illustrate the various distributions later on.

First, let’s generate random samples of increasingly larger sizes to observe how estimated probabilities
converge towards their ‘true’ state (recall that frequentist probabilities deal with objective, or ‘true’, events)

Simulating binomial experiments

We will simulate 10 coin flips by repeatedly (and randomly) sampling from two outcome possibilities (H|T).
We may assume there is an equal chance of selecting either possibility from the space given (H = .5|T = .5).
It will be demonstrated how the ‘true’ probabilities become increasingly realized as sample size increases.

set.seed(22) # Enables replication

tosses <- sample( # Using R's built-in 'sample' function
x = c(1,0), # Represents Heads and Tails as `1` and `0` (sample space)
size = 10, # Represents how many tosses are made (sample size)
replace = TRUE, # Replaces value taken from sampling space (when appropriate)
prob = c(.5,.5) # Describe the probability of selecting each sample (50% for Heads, 50% for Tails)

)

numflips <- 1:length(tosses) # Total number of flips
numheads <- cumsum(tosses) # Cumulative summation of all heads
propheads <- round(numheads/numflips,2) # Proportion rounded to 2 decimals

Assuming ‘1’ and ‘0’ represent Head and Tails respectively, our sequence of coin-flips can be represented as
0, 0, 1, 1, 1, 1, 1, 1, 0, 0. Out of 10 coin flips in total, we viewed 6 Heads.

Note how the ‘final’ proportion of Heads P (H) = 6
10 = 0.6 does not match the ‘true’ probability of P (H) = .5.

According to frequentist theory, the ‘sample’ of coin tosses (N = 10) is not representative of the ‘population’
of coin tosses (essentially infinite). Although we cannot toss a coin an infinite number of times, we can
increase the sampling space which should reduce the gap between the sample and population estimates.

Converging towards the population mean

To test the assertion that larger N ’s shift sample parameters towards population parameters, let’s first
estimate the probability of heads (P (H)) with each flip. This would generate a sequence like the following,
0, 0, 0.33, 0.5, 0.6, 0.67, 0.71, 0.75, 0.67, 0.6 (each probability represents the cumulative number of heads
divided by the cumulative number of trials). We can plot the probabilities using a line graph (the true
population parameter is represented by the horizontal blue line).

plot(propheads, # Name of vector created above
ylim = c(.1,.9), # Limits of the y-axis
type = "b", # We want 'both' lines and scattered values
col = "red", # That is red
xlab = "10 coin flips", # The label of (horizontal) x-axes
ylab = "Proportion of Heads") # The label of (vertical) y-axes
abline(h = .5,col = "blue") # Draw a y-intercept of (.5) to illustrate the 'true' parameter
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Let’s keep flipping the coin and see what happens. . .
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Note the sample probability of observing a Heads approximates the ‘true’ probability, P (H) = .5
after a large number of flips. . .

Flipping coins can produce Heads or Tails, meaning the responses are categorical, not continuous (a coin-
flip cannot result in .8 Heads or .2 tails). To recall our earlier point, data with two nominal categories
(‘successes’ and ‘fails’) are described as binomial.

Not all nominal data is binomial

Nominal data can contain multiple (>2) categories and not restricted to binomial interpretations. To illus-
trate, suppose we recorded which vegetables were purchased over the course of a pre-determined time period
(say 100 days). We could describe the probabilities of vegetabl purchase as follows:

Vegetables Vegetable Label Purchase probability
Broccoli V1 P (V1) = .12
Cucumber V2 P (V2) = .28
Tomato V3 P (V3) = .16
Carrot V4 P (V4) = .44

We could report that 12% of all vegetables purchased will be Broccoli (which is technically not the same as

7



thinking there’s as 12% chance of purchasing Brocolli). Also note that P (V1) + P (V2) + P (V3) + P (V4) = 1,
satisfying the constraint that all probabilities sum up to 1.
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We can visually plot our probabilities to note which vegetable appears likely to be purchased on a given
weekday.

Trending towards normal (distributions)

We had previously assumed that our coin was ‘fair’, meaning that after enough iterations, both Heads and
Tails can be expected at probabilities of .5 and .5 respectively. We summarized this as P (H) = .5; P (T ) = .5,
which gives a total probability of 1.

Now suppose we had a trick coin that is expected to produce Heads 65% of the time. Although the total
probability would not change (it must always be 1), we can update the likelihood of viewing Heads and Tails
(as 1-Heads). So if P (H) = .65, P (T ) = 1 − P (H) = .35.

We may summarize the true probabilities of our two coins below:

Coin Type Heads Tails
Fair (50/50) P(H) = .5 P (H) =.5

Unfair (65/35) P(H) = .65 P (T) =.35

From our example earlier, we know that the true/population-level probabilities will become evident with
increasing sample sizes. If we flip an unfair coin many times, the sample probability should become P (H) =
.65. Let us now examine how probabilities are distributed across a sample space.

8



More coin flips!

In the example below, we present simulated data of participants, each flipping the same coin across 10 trials,
to ensure we have a reliable estimate from each sample.
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As you increase the size of your sample, the shape of the distribution tends towards normality
and the mean estimate of the distribution approaches the true population mean - this constitutes
the essence of the Central Limit Theorem (pp. 312-314).

The normal distribution

A core assumption of many frequentist tests is that the data being analyzed is normally distributed. Also
called a Gaussian distribution, this resembles a bell-shaped curve that demonstrates most values measured
fall in the middle of the total value range.
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Normally distributed scores
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A more technical definition is that 68.3% of the area under the normal curve falls within 1 standard deviation
of the mean. Similarly, 95.4% of the distribution falls within 2 standard deviations of the mean, and 99.7%
of the distribution is within 3 standard deviations.

hist(rnorm(n=1000, mean = 10, sd = 1), # See below
main = "Normally distributed scores", # Main title
xlab = "Test score range", # x-axis label
breaks = 10, # Number of bars
density = 50, # Shading of bars
col = "red") # Bar color

rnorm() creates a normally distributed vector with three arguments: n= sample size, mean= desired mean
estimate, and sd= desired standard deviation. The example above created a 1000-item vector, so n=1000
with mean=10 and sd=1.

Non-normal distributions

There are various other distributions that are not normal. This does not mean there is anything wrong
with your data (in fact, many distributions should ideally not be normal, such as suicide rates). Having
non-normally distributed data means you have to think more carefully about the type of analysis to run,
and/or whether you may need to transform the data.
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Standard error

One consequence of increasing the sample size (N) is that standard deviation (σ) decreases.

However, a core assumption of frequentist reasoning is that ‘true population’ estimates are fixed. Therefore,
a varying σ estimate cannot be correct (it is not fixed). A primary reason we are interested in computing
range estimates is to find a continuum of values within which the population parameter is likely to be found.

One workaround for this issue is either to compute the sample standard deviation (discussed last week).
You can next estimate the Standard Error (SE) of the mean, which can be computed as SE = σ√

N
. SE

constitutes a more reliable estimate of sampling variance relative to standard deviations - the former describes
mean variance across all tested samples (N ) whereas σ describes variation across each particular sample (n1,
n2, n3 - see below).
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Ranges estimates (continued)

Knowing SE allows estimating another commonly used range estimate, the 95% confidence interval (CI).
This describes the limits within which we can be 95% confident that the true population parameter resides.

# We want to identify the range where the sample mean will be found 95% of the time across a NORMAL distribution
qnorm(p=c(.025,.975)) # 97.5% - 2.5% = 95%

## [1] -1.959964 1.959964

Watch from 1:09 onwards.
In practical circumstances, we generally know sample (not population) parameters. In this case, we should
estimate sample standard deviation (called standard error) and adjust our confidence intervals by sampling
from a t-distribution instead of a normal distribution.
Suppose a sample mean of X̂ = 6.3 with a standard deviation of σ = .8. Assuming our sample contained
N = 30 students from a normal distribution, we can calculate standard error as SE = σ√

N
= .8√

30−1 which
gives SE = 1.46. Now we can derive the lower (X̂ − (tLIM ×SEM)) and upper (X̂ +(tLIM ×SEM)) limits
of a confidence interval, where tLIM represents the lower and upper quantiles of a t-statistic distribution.
We use the t-statistic distribution whenever we’re interested in inferring population parameters but only
have sample data.
Let’s review how to find tLIM estimates from R.

# Suppose we have a sample of N=30
N=30

# And we want to identify the range where the sample mean will be found 95% of the time
qt(p=c(.025,.975),df=N-1) # 97.5% - 2.5% = 95%

## [1] -2.04523 2.04523

We can plug these values into our earlier formula to conclude that the lower and upper limits of a 95%
confidence interval are 6.3 − (2.05 × 1.46) = 3.04 and 6.3 + (2.05 × 1.46) = 9.02. We can roughly conclude
that the true population mean is likely to be found within a range of 3.04 and 9.02 about 95% of the time.
Note that CIs can be of any range you desire (e.g., 90%, 99%). 95% is the convention within Psychology.
Standard Error (SE) and Confidence Intervals (CIs) are essential range estimates when we don’t know the
population (which is frequently the case), so make sure you grasp this concept clearly!
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Lab activity

1. Create 1000 random values using (mean=1, sd=10) as parameters and store these in a variable (hint
use the rnorm() function).

2. Report the mean, standard deviation and standard error of your custom variable. Show how you
calculated the latter manually.

3. Summarize your variable using a histogram with modified plot title, x-axis and y-axis labels
4. Create a second normally distributed variable using (mean=1, sd=10) as parameters but this time

with 100000 units, then assign these values to a second variable. Similar to earlier, (re)estimate the
mean, SD and SEM for the second variable.

5. Provide a second histogram with customized titles and axes labels
6. Does the width of sampling distributions vary between the two variables? Explain briefly why (hint

remember the central limit theorem).
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