
PS303 - Week 2

Describing data (pp.126-139; 151-169)

From vectors to data frames

Last week we spoke about how to create vectors to contain series of values. We also discussed some basic
operations on vectors. When we have multiple data series of interest, it can be useful to create multiple
vectors and combine them into data frames, which are two-dimensional data structures. Data frames ensure
vectors are organized, in a single structure, and can be appropriately labeled for easy reference.

One of our goals today will be to generate a data frame and estimate some summary statistics using R’s
built-in functions. The data for today’s exercise has been taken from StatsFiji. We will also provide a gentle
introduction to the underlying (statistical) calculations, along with the symbols they use, to have a clearer
idea of how estimates are computed.

USP enrollment rates

In the image below, we have 3 columns and 4 rows of data. Each column represents total students for
each year. Each row represents total students for each faculty.

Our first task today will be to re-create this table in R.

Lets first create the three column vectors representing the enrolment frequency of students each year.

Creating vectors for each of the years
ef.2015 <- c(3448.5,5004.5,4689.6,3479) # For 2015
ef.2016 <- c(3461.9,5106.6,4860.2,3484.7) # For 2016
ef.2017 <- c(3765.4,5374.4,5352,3915) # For 2017
schools <- factor(c("FALE","FBE","TAFE","FSTE")) # School names (as factor)

We have to inform R that 'schools' is a factorial (categorical) variable, otherwise any non-numerical values are stored as characters that contains the names of each school (be aware of the correct order)

1

https://www.statsfiji.gov.fj/index.php/statistics/social-statistics/education-statistics43

We can generate columns using the function 'cbind.data.frame' and store the output in a variable called 'my.df'
my.df <- cbind.data.frame(schools,ef.2015,ef.2016,ef.2017)

my.df

schools ef.2015 ef.2016 ef.2017
1 FALE 3448.5 3461.9 3765.4
2 FBE 5004.5 5106.6 5374.4
3 TAFE 4689.6 4860.2 5352.0
4 FSTE 3479.0 3484.7 3915.0

We have our first data frame! Whenever creating data frames, ensure that:

• each row represents a participant/identity variable
• each column should represent a task/condition variable

Suppose we want to re-name columns. . .

Let's look at the column names present...
colnames(my.df)

[1] "schools" "ef.2015" "ef.2016" "ef.2017"

We can assign names to each of the column labels

When changing labels, the ORIGINAL label should be on the left-hand side and the ALTERNATIVE label on the right-hand side

colnames(my.df)=c("schools"="Schools",
"ef.2015"="2015",
"ef.2016"="2016",
"ef.2017"="2017")

my.df

Schools 2015 2016 2017
1 FALE 3448.5 3461.9 3765.4
2 FBE 5004.5 5106.6 5374.4
3 TAFE 4689.6 4860.2 5352.0
4 FSTE 3479.0 3484.7 3915.0

We could also alter row.names if necesary. . .

Let’s try answering the following questions using R:

1. What was the total number of students enrolled in FALE?
2. What was the total number of students enrolled for the 2016 academic year?
3. What were the mean and standard deviation of students enrolled in 2017?

2

Q1: What was the total number of students enrolled in FALE?

The data for each faculty is provided in individual rows (specifically, FALE is the first level under the
Schools variable inside the data frame my.df). Our goal is to:

• Select all numeric values associated with the FALE factor in my.df

• Sum all the values together.

First, let’s look at how we select variables (columns) in R using the $ operator.

If you type in `my.df$`, you will see the variables present inside the df. For our exercise, we want to select the values assocated with FALE.

Selecting the Schools variable
my.df$Schools

[1] FALE FBE TAFE FSTE
Levels: FALE FBE FSTE TAFE

We only want to select the FALE level

my.df$Schools=="FALE" # This functions as an INDEX

[1] TRUE FALSE FALSE FALSE

Now we can apply the index to the data frame

my.df[my.df$Schools=="FALE",] # Values before the comma describe ROW indices

Schools 2015 2016 2017
1 FALE 3448.5 3461.9 3765.4

We only want the 2nd, 3rd and 4th values of the row

my.df[my.df$Schools=="FALE",2:4] # Values after the comma describe COLUMN indices

2015 2016 2017
1 3448.5 3461.9 3765.4

Almost there!

Now we can add up these values by using the sum function on the entire argument

sum(my.df[my.df$Schools=="FALE",2:4])

[1] 10675.8

We could also store part of the argument inside a variable on which we could run operations

3

fale.st <- (my.df[my.df$Schools=="FALE",2:4]) # Assign the operation to a variable, then
sum(fale.st) # Apply a function to the newly created variable

[1] 10675.8

A1: The total number of students enrolled in FALE across the years 2015, 2016 and 2017 was
10675.8.

Q2: Total students enrolled for the year 2016?

Recall that the years were stored as COLUMN variables. We can look at the STRUCTURE of our dataset
by using the str argument

str(my.df)

’data.frame’: 4 obs. of 4 variables:
$ Schools: Factor w/ 4 levels "FALE","FBE","FSTE",..: 1 2 4 3
$ 2015 : num 3448 5004 4690 3479
$ 2016 : num 3462 5107 4860 3485
$ 2017 : num 3765 5374 5352 3915

It’s comparatively easier to run operations on column variables as there’s no need to specify an index. . .

my.df[,"2016"] # Remember that values AFTER a comma specify the column

[1] 3461.9 5106.6 4860.2 3484.7

Now the sum. . .

sum(my.df[,"2016"])

[1] 16913.4

When working with columns, it can be easier to use the $ operator

To refer to a single column with a data frame, use the '$' operator
sum(my.df$`2016`)

[1] 16913.4

Back-ticks are required to call in a variable that begins with a number when using the \$ operator (e.g.,
‘2015‘ instead of 2015). It is good practice to use variable names that DO NOT begin with numbers and/or
DO NOT contain spaces/special characters

A2: The total number of students enrolled during 2016 was 16913.4.

As you may have surmised by now, we can refer to specific rows/columns frame by indexing within square
brackets. This allows us to refer to rows/columns by their position in the data frame.

Suppose you are interested in knowing the number of students enrolled in 2017 for FALE only.

4

my.df[my.df$Schools=="FALE","2017"] # We have to specify the ROW index, not the column

[1] 3765.4

What about all the students in 2017?

my.df[,"2017"]

[1] 3765.4 5374.4 5352.0 3915.0

Indexing is a powerful tool for extracting values!

Q3: What were the mean and standard deviation of students enrolled in 2017?

The mean is the average point estimate of a numerical data series. Standard deviation describes the dispersion
of the mean point estimate.

R has base functions for estimating both quantities (called mean() and sd() respectively)

Let's estimate the mean of 2017 enrolment rates
mean(my.df$`2017`)

[1] 4601.7

And the standard deviation
sd(my.df$`2017`)

[1] 881.4704

We can also estimate the median (or middle value)

median(my.df$`2017`)

[1] 4633.5

For most quantitative analyses that we will cover, the point estimates of interest are typically the mean (for
parametric tests) and median (for nonparametric tests).

Beyond point estimates, we also require range estimates to determine the level of variance associated with
our point estimate. A common variance estimate is standard deviation (σ), which describes how ‘far’ a given
value from a series is likely to be from the mean estimate

Let’s use R’s built-in function for estimating standard deviation for the year 2016 and store it in a variable
called sd.2016

5

sd.2016 <- sd(my.df$`2016`)
sd.2016

[1] 877.6898

We can round this to one decimal place using the round function. . .

round(sd.2016,digits=1) # We can instruct R how many digits we want out estimated to be rounded up by

[1] 877.7

We can also summarize our column data with the summary function

summary(my.df)

Schools 2015 2016 2017
FALE:1 Min. :3448 Min. :3462 Min. :3765
FBE :1 1st Qu.:3471 1st Qu.:3479 1st Qu.:3878
FSTE:1 Median :4084 Median :4172 Median :4634
TAFE:1 Mean :4155 Mean :4228 Mean :4602
3rd Qu.:4768 3rd Qu.:4922 3rd Qu.:5358
Max. :5004 Max. :5107 Max. :5374

Note the minimum and maximum values within the range, the mean and median estimates, along with the
limits of the inter-quartile range (IQR). We will return to what these estimates mean near the end of the
class.

For now, we can visually illustrate these summaries using a boxplot.

Boxplot summary

Let’s visualize the data with a boxplot

boxplot(x = my.df[,-1], # Name of your data frame (we exclude the first column, 1)
xlab = "Years", # x-axis label
ylab = "Students", # y-axis label
ylim = c(3000,6000), # Limit of y-axes (from 3000 to 6000 students)
border = "red", # boxplot border colour
frame.plot = TRUE # Draw a frame around the plot

)

6

2015 2016 2017

30
00

40
00

50
00

60
00

Years

S
tu

de
nt

s

Try to visually render your data whenever possible. It will help communication of your results to both
specialists and non-specialists

Student enrolment for 2017 is higher than 2015 and 2016

Some more boxplot options

7

Manually estimating mean and standard deviation

Each value within a data series represents an iteration (i). Assuming i = 1, we can write the enrolment
numbers for 2017 as

3765.4 + 5374.4 + 5352 + 3915 = xi + xi+1 + xi+2 =
∑

xi

We can divide the sum of values (
∑

xi) by the total number of iterations (n) to give us the mean (x̂). We
may now compute the average/mean estimate for the year 2017:

3765.4 + 5374.4 + 5352 + 3915
4 = 4601.7

The sum (
∑

) of each iteration (xi) divided by the total number of iterations (n) gives us the
mean estimate (x̂). Symbolically,

∑
xi

n = x̂.

Next, let’s go over the formula for sample standard deviation (σ) that is used by R (this varies slightly from
the formula for the population standard deviation). Recall that σ measures how values are ‘spread’ around
the mean estimate - it is a measure of data variance (larger σ’s mean wider spread of data).

The population standard deviation is written as:√∑N
i=1(xi − x̂)2

N

The sample standard deviation (σ), which is the one we will use, is written as:√∑N
i=1(xi − x̂)2

N − 1

We typically use the population standard deviation when we have the entire population of interest at hand
(rarely the case) or we only want to explain features in a sample and not the entire population. However,
we typically want to explain features of the population based on findings from our sample, for which the
sample deviation is more appropriate.

One reason for using the divisor N − 1 instead of N is because the observed values within a series lie, on
average, closer to the sample mean than to the population mean. A standard deviation calculated based
on deviations from the sample mean underestimates the desired standard deviation of the population. By
using N − 1 instead of N , we control for a (potentially) non-representative sample by making the outcome
of the division a little larger.

Additional point and range estimates

Suppose we’ve collected age data from a student population which looks like the following:

32, 27, 29, 41, 28, 22, 23, 19, 32, **5**, 31, **3**, 27, 22, 18, 19, 20, 31, 34, 29

There appears to be at least two values that do not make sense (in bold). These may be outliers that skew
our series average.

8

st.ages <- c(32, 27, 29, 41, 28, 22, 23, 19, 32, 5, 31, 3, 27, 22, 18, 19, 20, 31, 34, 29)

mean(st.ages)

[1] 24.6

One way to address this concern is to derive robust mean estimates, which involve ‘trimming’ the edges of
our series. For instance, we can remove 10% of the values at either end of the series. . .

3, 5, 18, 19, 19, 20, 22, 22, 23, 27, 27, 28, 29, 29, 31, 31, 32, 32, 34, 41

mean(st.ages,trim = .1) # How much of the series do we want to 'trim'?

[1] 25.5625

We could trim 20% of the series. . .

mean(st.ages,trim=.2)

[1] 25.66667

Trimming 10% and 20% of the series give us roughly equivalent values, so we can stick with the former (as
less of the original data is lost).

Recall that the inter-quartile range, or IQR, describes the difference between the 25th and 75th percentiles of
the data. This is conventionally used as the measure of variance when we’re interested in estimating group
medians.

range(st.ages) # Min and Max values within a series

[1] 3 41

We can estimate the total range

max(st.ages) - min(st.ages)

[1] 38

We can estimate the IQR in one step

IQR(st.ages)

[1] 11.25

Once you become familiar with what these estimates describe, you can use R’s built-in summary function to
view all the descriptives

9

summary(st.ages)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.00 19.75 27.00 24.60 31.00 41.00

Missing values

SUppose your research assistant provides you a new set of age data that you have to provide summary
statistics for

28, 22, 23, 19, 32, 5, 31, 3, 27, NA, NA, 22, 18, 19

For some reason, two values were not entered/collected. This will be a problem when we’re trying to run
operations on the variable. For example,

st.ages2 <- c(28, 22, 23, 19, 32, 5, 31, 3, 27, NA, NA, 22, 18, 19)
mean(st.ages2)

[1] NA

R does not know what to do if (even) one value is missing from the data. Instead of re-constructing the
entire series, we can instruct R to simply remove all missing values (described as NA)

mean(st.ages2,na.rm = T)

[1] 20.75

We can use this with other functions as well. . .

summary(st.ages2,na.rm = T)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA’s
3.00 18.75 22.00 20.75 27.25 32.00 2

Note that summary additionally describes the number of NAs in the dataset (which were removed)

Lab activity 2

Cause of death 2018 2019 2020
Heart disease 655381 659041 696962

Cancer 599274 599601 598932
Injuries 167127 173040 192176

Respiratory 159486 156979 156979
Stroke 147810 150005 150005

Alzheimers 122019 121499 133182
Diabetes 83564 87647 101106
Influenza 55672 69081 95219

Kidney diseases 50633 52260 91779

10

Cause of death 2018 2019 2020
Self-harm/suicide 48344 47511 44834

Have a look at the top ten causes of mortality in the world from 2018, 2019 and 2020, then go through the
following instructions to complete this week’s lab activity:

1. Create 3 numerical vectors (for the years 2018, 2019, and 2020) with the raw values from the top 7
causes reported (not the percentages).

2. Create 1 factorial vector with each of the top 7 causes functioning as a factor level.
3. Combine all vectors into a single table using cbind.data.frame().
4. Report the mean number of deaths & standard deviation for each year, rounded to one decimal value.
5. Construct a boxplot with a BLUE border and a YELLOW background (hint - see the boxfill argument

earlier).
6. Describe whether the average number of deaths (across all causes) has increased or decreased from

2018 to 2020.

Submit all your lab activities into the dropbox before the following class.

11

	From vectors to data frames
	USP enrollment rates
	Q1: What was the total number of students enrolled in FALE?
	Q2: Total students enrolled for the year 2016?
	Q3: What were the mean and standard deviation of students enrolled in 2017?
	Boxplot summary
	Manually estimating mean and standard deviation
	Additional point and range estimates
	Missing values
	Lab activity 2

