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Recap

NHSTSs for estimating differences between continuous parameters
« 1-sample t-test: Is the sample mean (M) different relative to a population mean (u), or Hy : M = pu?

» 2-sample independent t-test: Is the difference between two sample means different from a null estimate, or
H, : M; — M, = 0 (if a two-sided test is being run)?

» 2-sample pairwise t-test: Does the same sample measured at different times produce different results, or
HO : Timel — TimCQ =07

« One-way/independent ANOVA: Are the means of k > 3 independent groups statistically equivalent, or
H02M1:M2:M3?

~

« Linear regression: Do predictors (X;) account for outcome (Y') variance, or Hy : Y; = by + €;? Do
individual coefficients predict for outcome variance, or H,, : by = 07?

As our analysis of regression models demonstrate, there may be multiple predictors that contribute towards
observed variance. When we have multiple predictors, we can run factorial ANOVAs to test whether multiple
independent variables singly or interactively explain outcome variances.

Balanced factorial ANOVA: Main effects

By factorial, we imply ANOVAs with more than 1 independent variable (factor)
By balanced, we imply all levels of our design contain equal numbers of participants.

A balanced factorial ANOVA involves looking at multiple independent variables that have equal numbers of
observations for each level.

Suppose we want to know whether n = 12 participants with low and high levels of depression
(Factor 1) from Fiji and Singapore (Factor 2) drink different quantities of alcohol and we have three
participants’ data from each country and location:

ID Location Depression Weekly alcohol consumption (ml)
1 Fijiy Low; 311
2 Fijiy Lows 320
3 Fijis Lows 413

4 Singapore; Lowy 343



ID Location Depression Weekly alcohol consumption (ml)

5 Singaporey Lows 341
6 Singapore; Lowg 380
7 Fijiy Highy 375
8 Fijiy High, 420
9 Fijis Highs 412
10 Singapore; Highy 357
11 Singapore, Highs 519
12 Singapores Highg 448

We can summarize the mean alcohol consumed for each factor combination (Location X
Depression), which constitutes a 2 X 2 design.

Fijicolumni Singaporecjumn2 Total row () means
Low 348 354.67 Z}\f# — lpows = 351.34
depression Rows
Rowl
High 402.33 441.33 % — lpows = 421.83
depression Rows
Row?2
Tol T = et = 37516 2 = i = 398 T O = 35134
Column ( Cols Cols
C) means

Rows (R = 2) and columns (C = 2) refer to the different factors we are interested in. Row
and column averages (marginal means) refer to summary statistics of each factorial level. The
grand average (R x C) is the average of all marginal means across our data.

If we are interested in estimating whether factors can individually predict amount of alcohol drunk, we can declare
the following null hypotheses:

« Hyl : There is no difference in alcohol drunk between low and high depressed groups (
KColumnl = HColumn2)

« H\2 : There is no difference in alcohol drunk between Fijians and Singaporeans (4gowi = HRow?)



Remember that the row (R) and column (C') marginal estimates that refer to levels of factor. Across both Hy's, the
claim being tested is whether the marginal means associated with each factor are statistically equivalent (
p > .05).

Setting up the data

ID <- seq(1l:12) # 12 participants
Location <- rep(c(rep("Fiji",3),rep("Singapore”,3)),2) # Locations levels
Depression <- c(rep("Low",6),rep("High",6)) # Depression levels
Alcohol <- c(311,320,413,343,341,380,375,420,412,357,519,448) # Alcohol drunk

df <- cbind.data.frame(ID,Location,Depression,Alcohol) # Combine into data frame

# Convert non-Alcohol variables into factors
df$ID <- as.factor(df$ID)
df$Location <- as.factor(df$Location)
df$Depression <- as.factor(df$Depression)

# Print the data frame (named 'df')

df

#it ID Location Depression Alcohol
## 1 1 Fiji Low 311
## 2 2 Fiji Low 320
## 3 3 Fiji Low 413
## 4 4 Singapore Low 343
## 5 5 Singapore Low 341
## 6 6 Singapore Low 380
##t 7 7 Fiji High 375
## 8 8 Fiji High 420
#9 9 Fiji High 412
## 10 10 Singapore High 357
## 11 11 Singapore High 519
## 12 12 Singapore High 448

Let’'s run ANOVAs for each factor (similar to running 2 one-way ANOVAs) and assign the results into mod1 and
mod2

modl <- aov(formula=Alcohol~Depression,data=df) # Does depression predict alcohol consumed?
mod2 <- aov(formula=Alcohol~Location,data=df) # Does depression predict alcohol consumed?

We can extract the F'-ratio,sum of squares and p-values for each model by using the summary() function

summary (mod1)



it Df Sum Sq Mean Sq F value Pr(>F)

## Depression 1 14911 14911 6.204 0.0319 *

## Residuals 10 24032 2403

#o---

## Signif. codes: © '***' 9,001 '**' 9,01 '*' ©.05 '.' 0.1 ' ' 1

We found a main effect for depression, F; 19 = 6.204, p = .032, towards predicting alcohol consumption.

summary (mod2)
#it Df Sum Sq Mean Sq F value Pr(>F)
## Location 1 1564 1564 0.418 0.532

## Residuals 16 37379 3738

We did not find a main effect found for location, F; 19 = .418, p = .532, towards predicting alcohol
consumption.

The F'-ratio is the mean sum of squares of the factor variance

MS - SS Factor
Factor — d
f Factor

divided by the mean sum of squared residuals
MS - S SResiuduals
Residuals — d
fResiuduals

which gives us

The p-value tells us how likely is the F'-ratio to be observed assuming the null hypothesis (there is no relationship)
is true.

A key difference between running multiple one-way ANOVAs and a factorial ANOVA has to do
with how the residuals (difference between predicted and observed estimates) are calculated.
Note that the present data included k > 1 predictors, where each predictor would be



associated with a degree of outcome variability. During a factorial ANOVA, the residuals
associated with each predictor are taken into account when estimating main effects. In
contrast,a one-way ANOVA takes a single predictor into consideration exclusively, meaning
variances across all predictors are attributed to a single predictor, which would render the data
more ‘noisy’, In practical terms, a one-way ANOVA is less likely to detect a significant effect
(have greater Type-2 error) relative to a factorial ANOVA, even when both models involve a
single predictor.

Compared to a one-way ANOVA, a two-way factorial ANOVA can provide us with four possible outcomes:
1. Only Factor A matters
2. Only Factor B matters
3. Neither Factors matter

4. Both Factors matter (there is an interaction between A & B)



Only Factor A has an effect Only Factor B has an effect

® Factor B, Level 1 ® Factor B, Level 1
< O Faclor B, Level 2 X © Faclor B, Level 2
o 0
o = Ly ®
= T S T T
Level 1 Level 2 Level 1 Leval 2
Factor A Factor A
(a) (b)
Both A and B have an effect Neither A nor B has an effect
® Factor B, Level 1 ® Facior B, Level 1
< C Factor B, Level 2 ' O Factor B, Level 2
P a2 ® .
L I -t
= T = T
Level 1 Lavel 2 Level 1 Level 2
Factor A Factor A

(€) (d)

Figure 16.1: The four different outcomes for a 2 x 2 ANOVA when no interactions are present. In panel
(a) we see a main effect of Factor A, and no effect of Factor B. Panel (b) shows a main effect of Factor
B but no effect of Factor A. Panel (¢) shows main effects of both Factor A and Factor B. Finally, panel
(d) shows no effect of either factor.

Balanced factorial ANOVA: Main effects +
Interactions

An interaction between factors implies levels of one factor vary with levels of the other factor
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Some varieties of interactions
To explore for interactions across multiple predictors, we can either specify each of three terms (2 for main effects,
1 for the interaction) within the ANOVA model

mod2 <- aov(Alcohol~Depression+Location+Depression:Location)
mod2



## Call:

i aov(formula = Alcohol ~ Depression + Location + Depression:Location)
#it

## Terms:

i Depression Location Depression:Location Residuals

## Sum of Squares  14910.750 1564.083 784.083 21684.000

## Deg. of Freedom 1 1 1 8

##

## Residual standard error: 52.06246
## Estimated effects may be unbalanced

Which is the same as

mod3 <- aov(Alcohol~Depression*Location)
mod3

## Call:

it aov(formula = Alcohol ~ Depression * Location)

##

## Terms:

#it Depression Location Depression:Location Residuals
## Sum of Squares 14910.750 1564.083 784.083 21684.000
## Deg. of Freedom 1 1 1 8
##

## Residual standard error: 52.06246
## Estimated effects may be unbalanced

Applying the summary() function reveals whether either factor predicted variances in alcohol consumption (main
effects), and whether the two factors interacted to influence alcohol consumption

summary (mod3)

it Df Sum Sq Mean Sq F value Pr(>F)

## Depression 1 14911 14911 5.501 0.047 *

## Location 1 1564 1564 0.577 0.469

## Depression:Location 1 784 784 0.289 0.605

## Residuals 8 21684 2710

#it ---

## Signif. codes: © '***' 9,001 '**' @9.01 '*' ©.05 '.' 0.1 ' ' 1

We can manually compute the effect size for individual terms

) S SFactor 14911

= == — .407
K SSFactor + S‘SResiduals 14911 + 21684

We can report our findings as as follows



A2 x 2 ANOVA with depression levels and location as independent factors did not interact to predict
variance in alcohol consumption (p = .605). A reliable main effect was found for depression only,
Fig = 5.501,p = .047, 773 = 41.

We would be now justified in running post-hoc tests across our significant factor using two-sample t-tests.
However, because there are only two levels of the depression factor, this is not necessary presently as a main
effect here would be equivalent to a two-sample test.

Assumptions for running an ANOVA

Like all NHSTSs run earlier, a factorial ANOVA requires the data to meet certain assumptions in order to generate a
minimally biased estimate.

» Homogeneity of variance: Do the groups have statistically equivalent variance? We can run the Levene test
on our full (saturated) model viz. with both the main effects and interactions specified. If the null hypothesis
is supported (p > .05), we can assume data across all levels of a factor have statistically equivalent
variances

require(rstatix)
levene_test(mod3)

## # A tibble: 1 x 4

#it dfl df2 statistic p
## <int> <int> <dbl> <dbl>
## 1 3 8 0.769 0.543

» Residual normality: Are the residuals of the model normally distributed?

resid <- residuals(mod3) # Extract the residuals
hist(resid) # Draw a histogram
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This looks approximately normal. We can also run a shapiro test for normality to quantify our results

shapiro.test(resid)

#it

## Shapiro-Wilk normality test
H##

## data: resid

## W = 0.96931, p-value = 0.9035

The test supports the null hypothesis, meaning the assumption for normality has not been violated

Comparing models

Similar to our strategy with regression models, we may want to contrast across models to select the ‘better’ model.
We can use the F'-ratio to contrast between models.

Model — 1: Alcohol~Depression
Model — 2: Alcohol~Depression + Location + Depression:Location

We can estimate the sum of squares (S.S) for each model by subtracting the residual variability from the total
outcome variability



SSModel—l = SSTotal - SSResiduals—l

SSModel—Z - SSTotal - SSResiduals—2

We can estimate the difference (A) between the sum of squares for the two models and the degrees of freedom

SSA = SSmodei—2 — S SModel—1

dfa = dfrroder—2 — Afrrodel—1

Now we can estimate the mean square for the difference between models

SSa

MSp\ =
57 dfa

We extract the mean squares for the full model (with the main effects & interaction terms specified)

SSModel—l
MShiodel-1 = ———
dfModel—l
Now we can estimate the F'-ratio
MS
F=—>8_
MSModel—Z

We can use the anova() function directly on the model objects

anova(modl,mod2)

## Analysis of Variance Table

##

## Model 1: Alcohol ~ Depression

## Model 2: Alcohol ~ Depression + Location + Depression:Location

##  Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 10 24032
## 2 8 21684 2 2348.2 0.4332 0.6628

Because there is no significant impact of including the additional terms (Location and Depression:Location), we
can retain our initial model that explored for main effects across Depression exclusively.

Balanced groups across ANOVAs are ideal, but not always possible. After you finish data collection, you may have
to drop participants from conditions due to missing data, programming errors, or a host of non-predicted reasons.
Additionally, because all our predictors had two levels, there was no need for running post-hoc tests following
significant main effects.



We continue our discussion of factorial ANOVAs the following week, where we will discuss factors with k > 2
levels and run post-hoc tests when factors are significant. The lab activity will be provided at the end of next

week’s class.
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Source: https://microbenotes.com/anova/ (https://microbenotes.com/anova/)






