PS303: Week 10

pp. 472-495

Recap

What does an OLS regression tell us?

Hypothesis tests

0 predictors in null model means our Y estimate is equal to the intercept term (+ any residual left over)
Hy:Y, =by+e¢;

If our model has K predictors, then we create a regression mode for 7 data points and K groups.
Hy:Y; = (3 b Xa) + bo + €

To compare H\y with H 4, we can estimate F'-ratios, similar to how we ran the ANOVA. We estimate the sum of squares for the model, which is the
difference between the total variance and residual variance.

SSModel = SSTotal - SSResidual

We convert the sums of squares into mean squares by dividing the former with their respective degrees of freedom.

MShyioger = “Zi;# where d fi10q¢s = K (number of groups being compared).

M SResidual = i‘;zﬁ where dfresiquat = N — K — 1 where N and K are the total participants and groups samples respectively.

MSAModsI

We can then compute the F'-ratio (F' = .
M Spesidual

The larger (or smaller) the computed F' statistic, the greater (or smaller) is the likelihood of our null hypothesis being false.

ID Physical Activity (minutes)Depression scoresAge

1 128 48 21
2 127 45 21
3 150 46 22
4 107 41 24
5 142 50 22
6 138 50 20
7 144 41 20
8 133 44 18
9 147 48 25
10 116 50 19
1 90 64 27
12 86 63 27
13 109 48 42
14 105 57 25
15 75 51 37
16 75 58 38
17 100 60 33
18 91 61 43
19 82 62 38

20 79 49 43



##

## Call:

## Im(formula = df$depress ~ df$physical + df$age)
##

## Residuals:

#i Min 1Q  Median 3Q Max

## -11.8773 -4.0177 0.5577 4.2361 7.8883

##

## Coefficients:

i Estimate Std. Error t value Pr(>|t]|)

## (Intercept) 75.62516  14.55403 5.196 7.28e-05 ***
## df$physical -0.20009 0.07944 -2.519 0.0221 *

## dffage -0.05574 0.23429 -0.238 0.8148

#H#o---

## Signif. codes: @ '"***' @.001 '**' @.01 '*' @.05 '.' 0.1 ' ' 1
#i#

## Residual standard error: 5.886 on 17 degrees of freedom
## Multiple R-squared: ©0.4289, Adjusted R-squared: ©.3617
## F-statistic: 6.382 on 2 and 17 DF, p-value: 0.008558

Interpreting coefficients

##
## Call:
## 1lm(formula = df$depress ~ df$physical + dfage)
##
## Coefficients:
## (Intercept) df$physical dfgage
#it 75.62516 -0.20009 -0.05574
Note that the coefficients for both physical activity (bPhysical = —.20) and age (bAge = —.06) are negative. This implies that increased

depression scores are associated with reduced physical activity and age.

But are these coefficients reliable, or is the variance due to ‘random noise’? We ran one-sample t-tests to estimate whether the null hypothesis that
the coefficient is statistically equivalent to 0 can be retained/rejected.

}16 : bi =0
HAbl§£0

Recall that a linear regression is simply a correlation with a single predictor. We can estimate whether two variables are correlated by applying the
cor.test() function.

cor.test(x=df$depress, y=df$physical)

##

## Pearson's product-moment correlation

##

## data: df$depress and df$physical

## t = -3.6621, df = 18, p-value = 0.001783
## alternative hypothesis: true correlation is not equal to ©
## 95 percent confidence interval:

## -0.8501228 -0.2966781

## sample estimates:

## cor

## -0.6534146

We found a significant negative correlation between depression scores and physical activity (r = —.65, p = .002), as expected. The significant ¢
-statistic for the correlation corresponds with the -statistic noted for the coefficient across the earlier regression model.

Recall that 95% confidence intervals (C'Igse) tell us the min-max range within which a popoulation estimate will be observed. For example,
M = 2,Cly59 : 1.7,,2.1 tells us that the population parameter has a a 95% probability of falling between 1.7 and 2.1. A confidence interval
helps us locate the true population parameter () as the point estimate we typically calculate is a sample (therefore biased) parameter (M).

Since our regression coefficients (b; ) are also sample parameters, they do not state anything about the true population values by themselves.
Hence we can construct confidence intervals for coefficients as follows:

CI, = i)i (tCritical X SE(E)))

The tcoyitical Value is the test statistic at the 2.5% and 97.5% limits of the ¢-distribution with N — 1 — K degrees of freedom when we are
running a two-sided test. For a one-sided test, the critical value would be at the 5% or 95% limits, depending on the direction we are testing.



We can apply the confint() function within R to estimate the confidence intervals of our coefficients

confint(object = mod2, # Assign the regression model into 'object'
level = .95) # Declare the confidence interval range

## 2.5 % 97.5 %
## (Intercept) 44.9188456 106.33147593
## df$physical -0.3677007 -0.03248664
## dffage -0.5500581  0.43857177

If we wanted a 90% interval, we would alter our level accordingly

confint(object=mod2,level=.9)

#it 5% 95 %
## (Intercept) 50.3068756 100.94344591
## df$physical -0.3382907 -0.06189661
## dfgage -0.4633208 0.35183445

Note the ranges for by, pass through the null estimate (0). This tells us that there is a 95% (or 90%) probability that the population mean
is 0, in which case we retain the null (b; = 0). This is not the case for bphySiwl.

Our two predictors ( physical activity and age ) represent different scales relative to each other, and relative to our outcome variable
Depression . The variability across scales render interpretation of coefficients difficult - larger scales can bias coefficients outputs (e.g., minutes for
physical activity vs years for age).

We can standardize our coefficients (b — [3) to estimate which predictors have the strongest relationship with the outcome while controlling for
within-scale variance. Standardization constrains the entire o of our coefficients within 1.

N O Predictor
ﬁPredictor = Opredictor X
O Outcome
We already estimated bphysiml = —.20. We can estimate the standard deviations (0's) of physical activity (Predictor)and depression

(Outcome):

sd(df$depress) = 7.37 which is the ooyicome-
sd(df$physical) = 25.9 which is the o pyegictor -

We can estimate our standardized coefficient by applying it to the formula above:

—.20 x 259 = —.703
7.37

Our standardized coefficient for physical activity is Bppysicar = —-703.

Assumptions before running a regression

1. Normality: The residuals (¢; = 1}1 — Y;) should be normally distributed.

2. Linearity: The data should be linearly related.

3. Homogeneity of variance: The standard deviation of residuals (o) should be statistically equivalent.
4. Collinearity: When you use multiple predictors, these should not strongly correlate with each other.
5. No extreme outliers: A couple of data points are not distorting the model.

Examples of linear and non-linear trends
A

Linear Non-Linear Non-Linear

Residuals & Normality

Much of our assumption checks involve estimating patterns across our model residuals (€). We already discussed that ‘ordinary’ residuals are the

difference between the predicted (1}) and observed (Y') estimates. That is, for each % data point, the ordinary residual is ; = Y; — Y;. We can
extract the residuals from our model by applying the residuals() function.



residuals(mod2)=
-0.84, -4.04, 1.62, -11.88, 4.01, 3.1, -4.7, -4.01, 3.18, -1.36, 7.89, 6.09, -3.47, 3.78, -7.56, -0.5, 6.22, 5.98, 4.9, -8.42

We can check the distribution of the residuals with a histogram. We can also run a shapiro test for normality to acquire a quantitative
estimate.

Ordinary Residual Histogram

Frequency

Residuals

shapiro.test(ord.res)

##

## Shapiro-Wilk normality test
##

## data: ord.res

## W = 0.94698, p-value = 0.3235

Similar to the case with coefficients, if residuals of predictors and outcomes are from different scales, we can standardize them to facilitate
interpretation. The formula is

€

Ei U\/l*hi

A third form (“jackknifed residuals”) may be applied if we have many outliers. In this case, they may be preferable to standardized residuals. The
formula is:

€i
(T,i\/i - hz

o’ ; is the “estimate of the residual standard deviation that would have been obtained if the ith data point was removed.” This can be estimated by

L —
e =

Fortunately, we can simply apply the rstandard() and rstudent() functions.

rstandard(mod2)=
-0.15, -0.72, 0.3, -2.12, 0.73, 0.56, -0.86, -0.73, 0.61, -0.25, 1.46, 1.15, -0.72, 0.67, -1.39, -0.09, 1.09, 1.16, 0.89, -1.6

rstudent(mod2)=
-0.15, -0.71, 0.3, -2.4, 0.72, 0.55, -0.85, -8.72, 0.6, -0.24, 1.51, 1.16, -0.71, 0.66, -1.44, -0.09, 1.1, 1.17, 0.88, -1.68

We can look at the histograms from the three varieties of residuals obtained

Ordinary Residuals Standardized Residuals Jacknifed Residuals
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Frequency
Frequency

Residuals Residuals Residuals

Outliers

Any observation that varies notably from the model predictions (usually associated with jackknifed residuals that deviate notably). Outliers
which have high leverage fall along predicted trends while varying notably from the remaining set of distributions. When an outlier varies
notably from observed values and predicted trends, they have high influence.



High leverage

Quicome
Outcome

)

High influence

Predictor Predictor

Leverage is presented as hat value estimates, or h;. Influence is measured through estimating Cook’s distances (D;) where

*2
D= P
K+1 1-h

There are functions within R to extract leverage ( hatvalues(model) ) and influence ( cooks.distance(model) ) metrics.

hatvalues(mod2)=
0.0859411, 0.0858809, 0.1895072, 0.0963048, 0.1286199, 0.1094105, 0.1344169, 0.1218646, 0.2058641, 0.1537667, ©.1558316, ©.1936944, 0.3259137,

cooks.distance(mod2)=
7.0257884\times 107{-4}, ©.0161607, 0.0072417, ©.1600575, 0.0262658, ©.0127761, 0.0380784, 0.0244418, 0.0318038, 0.0037941, 0.1309195, 0.10624:

We can estimate whether any of the outliers have significant leverage (h;) and/or influence (D);) by passing values to the which= argument when
plotting our regression.

plot(x=mod2,which=4) # Cook's distance # Estimating Influence
plot(x=mod2,which=5) # Hat values # Estimating Leverage
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There are at least three data points that have high leverage and influence. We can re-run our regression model by excluding said data to
note any changes in the model.

mod3 <- 1m(df$depress~df$physical+df$age,
subset= c(-4,-18,-20))# Identify outlier positions

mod3

##

## Call:

## lm(formula = df$depress ~ df$physical + df$age, subset = c(-4,
# -18, -20))

##

## Coefficients:

## (Intercept) df$physical df$age

## 84.5185 -0.2456 -0.1618

This does not vary noticeably from our original model (without outliers removed)



##

## Call:

## Im(formula = df$depress ~ df$physical + dfgage)
#H#

## Coefficients:

## (Intercept) df$physical df$age

## 75.62516 -0.20009 -0.05574

For the data to be linear, the predicted/fitted values (f/i) should covary with residuals (€;) across a reasonably straight line.

plot(x=modl,which=1) # Fitted & residual values with outliers present
plot(x=mod3,which=1) # Fitted & residual values with outliers absent

Residuals vs Fitted Residuals vs Fitted
o g
110 o 110
R o -
w0 - o . o o o o
o
o %o ° ° o
5 ° o o ° 3 °
3 3 ° °
8 . 8 ° o
e | o ° ° &
? 0 4 o o o
°
° 200
! o4 o | 150
T T T T T T T ! T T T T
46 48 50 52 54 56 58 45 50 55 60
Fitted values Fitted values
Im(dfSdepress ~ dfSphysical) Im(dfSdepress ~ dfSphysical + dfSage)

The relationship appears reasonably linear regardless of whether outliers are present or not.

Homogeneity of variance

Check whether variances are linear (constant) across standardized residuals relative to fitted values

# Are variances homogenous?
plot(x=modl,which=3)
plot(x=mod3,which=3)
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Variances do not appear homogeneous, hence our t-tests (across b; coefficients) may not have been reliable.

We can reduce hetereogenity across variances by applying a hccm (heteroscedasticity corrected covariance matrix) when estimating standard
error.

require(lmtest) # Package
Imodl <- 1lmtest::coeftest(modl,type=hccm) # Test coefficients
Imod1l

## t test of coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 72.464437 5.786419 12.5232 2.531e-10 ***

## df$physical -0.185831 0.050745 -3.6621 ©0.001783 **

## ---

## Signif. codes: © '***' @.001 '**' 9.01 '*' @©.05 '.' 0.1 ' ' 1

The coefficient remains significantly different from the null after the hcem is applied



Check whether predictors are associated with each other (relevant whenever predictors > 2). To do this, we estimate variance inflation factors
(VIFs) which provide a quantitative indicator of predictor collinearity. To estimate VIF for each predictor X, in our model, we can run the following:
1

_ p2
1 R(fk)

VIF, =

R(Z_k) is the R? estimate if we were to run a regression where X, is the outcome variable and all X _;, were the predictors. VIF's smaller than 5

are typically fine (ie the predictors are not too strongly correlated).

car::vif(mod = mod2)

## df$physical df$age
## 2.322395 2.322395

-“...the square root (of the VIF) tells us how wide the confidence interval for the corresponding coefficient
is, relative to what would be expected if the predictors were uncorrelated with one another. With two
predictors, the VIF values are always going to be the same...” - p. 489

Selecting between models

Recall that we estimated two models

##

## Call:

## lm(formula = df$depress ~ df$physical)
##

## Coefficients:

## (Intercept) df$physical

H#H# 72.4644 -0.1858

##

## Call:

## lm(formula = df$depress ~ df$physical + dfgage)
H#H#

## Coefficients:

## (Intercept) df$physical df$age

## 75.62516 -0.20009 -0.05574

We want to select the “best” model (include variables that function as significant predictors). Including multiple predictors will boost your R? butat
the cost of reduced generalizability to new observations.

For linear models, we can estimate the AIC (Akaike Information Criteria) for each model. The smaller the AIC, the better the model.

Using backward elimination, we start with the full model and incrementally ‘drop’ predictors. The model with the smallest AIC is the one we want.
Alternatively, we can specify the largest model we are willing to tolerate and use forward selection.

step(object=mod2,direction="backward")



## Start: AIC=73.65
## df$depress ~ df$physical + dfgage

##
#i# Df Sum of Sq RSS AIC
## - dfgage 1 1.961 590.93 71.719
## <none> 588.97 73.653
## - df$physical 1 219.793 808.76 77.995
##

## Step: AIC=71.72
## df$depress ~ df$physical

##
#Hit Df Sum of Sq RSS AIC
## <none> 590.93 71.719

## - dfg$physical 1  440.27 1031.20 80.855

##

## Call:

## lm(formula = df$depress ~ df$physical)
##

## Coefficients:

## (Intercept) df$physical

#t 72.4644 -0.1858

null.model <- 1lm(depress ~ 1, df) # Null model with intercept only

# Forward selection using base R
step(object = null.model,

direction = "forward",

scope = depress ~ physical + age)

## Start: AIC=80.85
## depress ~ 1

H#it
## Df Sum of Sq RSS AIC
## + physical 1 440.27 590.93 71.719
## + age 1 222.44 808.76 77.995
## <none> 1031.20 80.855
##

## Step: AIC=71.72
## depress ~ physical

#t
## Df Sum of Sq RSS AIC
## <none> 590.93 71.719

## + age 1 1.9611 588.97 73.653

##

## Call:

## lm(formula = depress ~ physical, data = df)
##

## Coefficients:

## (Intercept) physical

## 72.4644 -0.1858

Statistical tests between models

We can subject entire models to an analysis of variance (ANOVA) to note whether the difference between the two vary significantly from a null
model.

anova(modl,mod2) # Run ANOVA across the models

## Analysis of Variance Table

## Model 1: df$depress ~ df$physical
## Model 2: df$depress ~ df$physical + dfgage

##  Res.Df RSS Df Sum of Sq F Pr(>F)
# 1 18 590.93
#HH 2 17 588.97 1 1.9611 0.0566 0.8148

The models are not statistically different, indicating the inclusion of the Age predictor did not improve our model, hence we can retain the Physical
Activity predictor only.



Conclusion

There are numerous diagnostics available for regression models. You don’t need to apply them exhaustively, but it's a good idea to have a grasp of
what each diagnostic parameter tells us.

Regressions are an excellent “first step” towards identifying meaningful predictors across your data set. By comparing between models and the
number of predictors, we can identify the most efficient model (ie that can generalizehas the largest probability of estimating variances across
novel observations).

For this week’s lab, you will be running a regression model with multiple predictors. Your task is to select the best model (optimal combination of
predictors) and provide regression diagnostics. Additional information is provided in the following slides.

In the Physical Activity Scale, there are three variants of Physical Acitivity (vigorous, moderate, walking). Simulated data for these three
physical measures, along with depression scores, are provided below. You will assess which combination of predictors is the best model for
predicting depression scores. For your chosen model, run regression diagnostics to respectively assess whether the assumptions of residual
normality, collinearity and homogeneity of variances are met.

1. Assign the three physical activity variables, depression scores and id’s to a single data frame (Hint: Use the cbind.data.frame()
function to combine the five variables).

N

. Run an OLS regression using the 1m() function to model Outcome~ Predictorl+Predictor2+Predictor3 . Next, report whether the
model is significant (Hint: Use the summary() function on the linear model created above).

w

. Using backward elimination, report which combination of predictors produces the smallest AIC (Hint: Use the step() function)

4. Generate diagnostic plots for estimating whether the assumptions for collinearity and homogeneity of variances are met (Hint: use the
which= argument within the plot() function).

5. Generate a histogram of ordinary residuals (Hint: Use the residuals() function on the model created)

Provide all code and plots on a document file (.doc or .pdf) then submit by the end of the following week.

Variables to create

# Variable setup

D <- seq(1:20)

Walking <- c(245,270,209,328,108,269, 380, 206,120,402,200,93,259,136,85,183,291,261,244,305)
Moderate <- c(74,113,118,51,121,126,132,58,109,54,62,151,59,99,103,146,142,65,100,70)
Vigorous <- c(54,78,62,76,67,63,35,39,74,55,31,30,61,51,79,69,60,57,75,32)

Depression <- c(44,64,60,57,54,62,53,48,49,58,45,56,43,63,50,34,32,47,40,69)

ID Depression scoresWalking*Moderate*Vigorous*

1 44 245 74 54
2 64 270 113 78
3 60 209 118 62
4 57 328 51 76
5 54 108 121 67
6 62 269 126 63
7 53 380 132 35
8 48 206 58 39
9 49 120 109 74
10 58 402 54 55
1 45 200 62 31
12 56 93 151 30
13 43 259 59 61
14 63 136 99 51
15 50 85 103 79
16 34 183 146 69
17 32 291 142 60
18 47 261 65 57
19 40 244 100 75
20 69 305 70 32

Note: *All activity scores in minutes





