Week 9 - Introduction to Inferential
Statistics

Reading: 351-357

Introducting Null Hypothesis Significance
Testing (NRST)

e A hypothesis is a statement or prediction about a relationship or effect that can be tested
through scientific research. It is an educated guess or a proposed explanation for a
phenomenon based on existing knowledge and observation. In scientific research, a hypothesis
is usually tested by conducting an experiment or collecting data.

e The goal of a psychological experiment is often to test the null hypothesis and see if there is
enough evidence to reject it and support the alternative hypothesis. A null hypothesis is a
statement that there is no significant difference or relationship between two variables or
groups. The null hypothesis is the default (albeit ‘fictional’) assumption that is made when there
is no evidence to suggest otherwise. In other words, it is the hypothesis that any observed effect
is due to chance.

e Null Hypothesis Significance Testing (NHST) is a statistical method used to determine whether
there is enough evidence to reject the null hypothesis in favor of an alternative hypothesis.
Some issues with NHT are:

e Because the null hypothesis is ‘imaginary’, it may not be correct

e NHT assumes a normally distributed dataset, which is not always the case - Just because a null
hypothesis is ‘rejected’ does not necessarily mean the alternate hypothesis is correct

e These issues will be expanded on in later sections.

A null hypothesis is an example of a statistical hypothesis that describes the pattern to be
investigated. In NHT, this includes two components:

 The null hypothesis (Hp), which states there is no difference between our comparisons
» The alternative hypothesis (H 4), which states there is a difference

The goal of NHST is to evaluate the evidence for or against the research hypothesis by comparing it to
the null hypothesis. This is done by collecting data and applying statistical tests to determine the
probability that the results observed are due to chance (if the null hypothesis is true). If the
probability of obtaining the results by chance is low enough (usually below a certain threshold, such
as p <.05), the null hypothesis is rejected and the research hypothesis is supported.



A research hypothesis describes the phenomenon of interest (e.g., does reduced physical activity
increase depression?) This is a statement or prediction about a relationship that can be tested
through research. It is an educated guess for a phenomenon based on existing knowledge and
observation. Research hypotheses are usually formulated before data is collected and analyzed.

Research hypotheses are tested by statistical hypotheses. The latter are
designed to evaluate the evidence of the research hypothesis by comparing
it to the null hypothesis. NHST is a common statistical approach within
Psychology that helps evaluate the tenability of a research hypothesis based
on a sample of data.

Testing hypotheses through statistical analyses

Null hypotheses are tested through statistical analyses by comparing the observed data to what
would be expected if the null hypothesis were true. Statistical analyses involves estimating and
comparing across variable parameters (values of interest). This can include Means and Medians as
point estimates, as well as standard deviations (S D) and variance as range estimates.

We typically compare across samples, which are assumed to represent the overall population. In
practice, the sample may not be a ‘true’ representation of the population - there will always be a
degree of sampling error (random variance across individuals that may not be present in the actual
population)

Statistics involves the quantitative description and interpretation of sample parameters

 Recall that the goal of NHST is to determine whether we can retain/accept or reject Hy (the null
hypothesis that there is no difference). Note that we cannot make claims about H 4 (the
alternative hypotheseis) using NHST!

e When performing NHSTs, we aim to determine the probability of observing the results obtained
from the sample data if H were true. This probability is known as the p-value. If the p-value is
less than a pre-determined level of significance, usually set at 0.05, we conclude that the data is
statistically significant and that the results are unlikely to have occurred by chance.

e If you see p <.05, you can (usually) reject the null hypothesis as this means that the observed
data falls outside 95% of what would be expected assuming the sample is representative of the
true population.
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The probability of our result being observed if the null hypothesis was true is less than 5%, in which
case we would conclude that the data statistically significant (p < .05).

A note on statistical significance

Just because you see statistically different effects do not necessarily mean
that the latter are practically important!

e There are several reasons why statistically significant effects may not be practically
important:

1. Small effect size: Even though an effect may be statistically significant, it may be very small
and imply little practical impact. It is important to consider the magnitude of the effect,
not just its statistical significance.

2. Large sample size: With large enough samples, even small differences between groups can
be statistically significant, but they may not be practically important.

3. Lack of practical relevance: Even if an effect is statistically significant, it may not be relevant
to the real-world problem or question being studied.

4. Multiple testing: When performing multiple tests on the same data set, the chances of
finding a statistically significant result by chance increases, which can lead to false
positives (Type-1 error).

It's important to consider both statistical significance and practical importance when evaluating
research findings. This can be done by looking at effect size, confidence intervals, and the
relevance of the results to the real-world problem or question being studied.



Sample Sizes

e Animportant consideration when undertaking NHST is sample size, as this affects the ability to
detect a difference or relationship between variables or groups. The larger the sample size, the
greater the power of the test, which means that it is more likely to detect a real difference or
relationship if one exists. However, with large sample sizes, even small differences between
groups can be statistically significant, but they may not be practically important as noted above.

e Sample size must be chosen carefully, based on the research question, the expected effect size
(a measure of the magnitude of the difference or relationship between variables or groups), and
the desired level of power (the probability of correctly rejecting the null hypothesis when the
latter is false).

Some rules of thumb for effective sample sizes...

n < 20: Only large/strong effects can be detected.

20 < n < 50: Medium-to-strong effects can be detected.

n > 50: Weak-to-medium effects (but not correlations) may be detected.

Table 13.1 How Relationship Strength and Sample Size
Combine to Determine Whether a Result Is
Statistically Significant

Relationship strength
Sample Size Weak Medium Strong
d = Maybe
Small (N = 20) No No
r=Yes
Medium (N = 50) No Yes Yes
d = Yes
Large (N =100) Yes Yes
r=No
Extra large (N = 500) Yes Yes Yes

Example of a hypothetical study using NHST

Suppose you are a nutritionist interested in obesity in Fiji. You want to test whether typical snacks in
Suva are calorically different from typical snacks in Levuka.

You have the raw calorie data of 10 Suva residents (108, 117, 113, 111, 109, 116, 110, 110, 109, and
111 calories) and the raw calorie data of 10 Levuka residents (110, 112, 114, 112, 110, 109, 115, 118,
115, and 107 calories). We can explore this data by constructing two histograms.



Suva, N = 10 participants

Frequency

r T T T 1
100 110 120 130 140 150

Calories

Levuka, N = 10 participants

Frequency
00 05 10 15 20 25 30

1

T T 1
100 110 120 130 140 150

Calories

From the raw data, we can estimate the mean and standard deviations from Suva (
M =111.4,5D = 3) and Levuka (M = 112.2, SD = 3.3). There seems to be a marginal
difference of 1~2 calories, which is likely to be neither significant nor important...

A two-sample t-test can confirm that the null hypothesis (of there being no difference between Suva
and Levuka calories) is statistically supported (p = 0.581, which is larger then the typical threshold of p
=.05)

We decide to increase our sample size to 100 Suva and 100 Levuka residents (raw data not shown to
conserve space).

Now our histograms might look like the following:
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Levuka, N = 100 participants
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 The difference between calories in Suva (M = 110.3, 5D = 3) and Levuka (
M = 111.3, 5D = 2.8) remains virtually unchanged when looking at means and SDs.

e Yet running a t-test now produces p = 0.009, which is clearly smaller then p < .05, meaning
we can claim that the difference is statistically significant.

A difference of 1~2 calories was too weak to be detected when sample sizes
were n = 10. Yet when the same parameters were noted for samples
containing n = 100 each, our test reached significance.

It is common (and incorrect) to keep collecting data the significance threshold is passed. Known
as p-hacking, this is an ill-informed practice within frequentist statistics. Doing so in isolation can
generate false positives (Type-1 error) and highlight effects that may not be practically
meaningful.

Some common NHST tests

An overview of some common statistical tests used in Psychology are provided below:

¢ One-sample t-test

o You have one group/sample (k = 1) and you know the population parameter

o The average grade for a Research Methods class of 100 students is 70 (M = 70). The
average grade for all RM classes is 69 (i = 69).

o Hj: The grade average for the current RM class is statistically equivalent to the population
grade average (M = p).

o During analysis, we estimate test statistics from the differences observed. The probability
of observing the test statistics given our null hypothesis informs us whether (any)
difference is significant.

e Two-sample t-test

o You have two groups (k = 2) with two parameter estimates (e.g., Group 1 = uy; Group 2 =
w2).

o Hj: The two groups are statistically equivalent (41 = o). ++ When we measure the same
group twice, we run pairwise/repeated tests. For example, if we measure depression scores



before and after lockdowns and note whether there is a difference between the two times
(where HO : TimelDepression = Time2Depression)-
++ When we measure two seperate groups of participants, we run independent tests. For
example, if we measure average calories consumed by Levuka and Suva residents (e.g.,
Hy : Levukacaiories = Suvacaiories)
» Analysis of Variance (ANOVA)

o You have more than two groups (k > 3).

o You want to find out whether the groups being tested are different from one another (
pl = p2 = p3).

o If an ANOVA is significant (meaning H is rejected), we can run two-sample (post-hoc)
tests to find out which group differences are significant.

o For example, if we want to test that the mean (u) calories between Levuka, Suva and
Labasa are statistically equivalent, we test the null hypothesis of ul = pu2 = u3d. If a
significant effect is found, then we can test whether ul = p2, ul = pd and p2 = p3

Similar to ¢-tests, ANOVAs produce a test statistic (called the F'-ratio) which can be used to estimate a
p-value. The latter tells us whether observed variances are statistically different between groups.

There are varieties of ANOVAs for independent, repeated and mixed contrasts. These include:

¢ One-way ANOVA
o You have k > 3 levels along a single independent variable and you want to test whether
there is an overall difference
o Are the calorie densities of kokoda between Levuka, Suva and Tavua are statistically
equivalent (p > .05) or different (p < .05)?
Repeated ANOVA
o You have k > 3 measurements of the same group. For example, do academic
performances varies across summer, fall and winter semesters?
Independent/one-way ANOVA
o You have k > 3 groups that are independent of each other
o Are the academic performances across three schools in Suva statistically different?
Mixed ANOVA
o You have k > 3 independent groups that you sample across k > 2 times. For example,
are the academic performances across three schools in Suva statistically different
between summer and winter sessions?
Factorial ANOVA
o You have (at least) 2 independent variables. For example, is school location and the
amount of time spent on social media predictive of academic performance?

Across tests, we want to know whether the difference between means is
statistically significant (p < .09). Statistical significance refers to the
likelihood that the results of a study are due to chance rather than a real
difference or relationship between variables or groups. It is typically
determined by a p-value, which is the probability of observing the results
obtained from the sample data if the null hypothesis were true.



Two-sided vs One-sided tests

Significance thresholds are further informed by whether you decide to run two-sided or one-sided
tests.

e Atwo-sided test checks for a difference or relationship in either direction. For example, a two-
sided test for the mean of a population would check if the sample mean is significantly different
from the population mean in either direction, either higher or lower.

e Aone-sided test checks for a difference or relationship in one specific direction. For example,
a one-sided test for the mean of a population would check if the sample mean is significantly
different from the population mean in one direction, either higher or lower, but not both.

Critical Region for Two-tailed test
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Conclusion

e NHSTs are useful for rejecting or retaining null hypotheses, but they cannot tell us whether the
alternative claims are true.



¢ p-values tell us whether an observed difference is statistically different (‘significant’) or not, but
is silent as to whether the difference is practically meaningful.

o Effect size estimates help determine whether an observed difference is practically important.
For example, Cohen's difference score (d¢copen) is @ standardized estimate which tells us hoe
many S D's two groups differ by (most commonly used for t-tests, assuming some assumptions
are met) (https://toptipbio.com/cohens-d/)

e Restricted to binary claims (either an effect is significant or it is not). Not informative for
estimating continuous interpretations.

e Time to become a Bayesian? (https://medium.datadriveninvestor.com/bayesian-vs-frequentist-
for-dummies-58ce230c3796) (not all statistics are frequentist!)
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