

EXPERIMENTAL RESEARCH: OVERVIEW

Week 5

Reading: pp. 113-140 (27 pages)

WHY EXPERIMENT?

Identify <u>cause>effect</u> relationships

Manipulate an *independent* variable (e.g., IV = ice cream flavor) to note effects on a dependent variable (e.g., DV = exam performance)

Can run multiple conditions (e.g., participants with pre-existing flavor preferences)

Control for extraneous variables (e.g., respondents who ate prior to the procedure)

PRACTICAL CONSIDERATIONS

Participant recruitment

- Who will you investigate?
- How will you find and incentivize respondents?
- Using a subject pool

Using a standard procedure

- Mitigate experimenters' expectancies
- Single or Double blind? Pilot tests
- Maintain secure records

Manipulation check

• Was the IV successfully manipulated, as perceived by the participant?

VALIDITY (FOUR TYPES)

Internal validity (causal relationships)

Did A cause B?

External validity

Does the relationship between A and B represent real-world circumstances?

Construct validity

• Are the constructs adequately defined and operationalized?

Statistical validity

Were appropriate data collection, organization and analytic strategies used?

EXTRANEOUS PRECAUTIONS

Be wary of <u>extraneous</u> variables (varies in a study context independent of IVs and DVs)

Extraneous influences (e.g., differences in motivation, histories, predispositions, etc) create "noise"

 <u>Control</u>: Hold extraneous variables (maximally) constant, random assignment, matched groups design, counterbalancing

<u>Confounds</u> are extraneous variables that systematically varies with the independent variable (e.g., baseline aggression \sim violent video games \sim actual violent behavior)

TREATMENT VS. CONTROL

A basic experiment includes (at least) two conditions: Treatment and Control • Types of Control conditions: No-treatment, placebo, wait-list control

Gold-standard of medical research: <u>**RCT**</u> (<u>**R**</u>andomized <u>**C**</u>linical <u>**T**</u>rial)

The "best" overall medication?

Condition Figure 5.2 Hypothetical Results From a Study Including Treatment, No-Treatment, and Placebo Conditions

EXPERIMENTAL DESIGN

Between or within subjects? Depends on the question...

Controlling for extraneous effects between groups (solutions: random assignment, matched groups...)

Controlling for extraneous effects *within* groups (order effects, carryover and practice effects, fatigue, contrast effects)

Solution: Counterbalancing (complete, random)

General strategy: If time and resources are available, and carryover effects are not a concern, use within-subjects. Otherwise use between-subjects.

Population

Considerations during sampling:

- 1. Students taking math
- 2. Gender and Age proportions (stratified)?
- 3. School district?
- Pre-existing constraints (e.g., learning disabilities, unfamiliarity with language, etc)

Extraneous confounds ('Noise')

- 1. Color preferences
- 2. Previous meal content
- 3. Previous history of ice cream preference
- 4. Mood/State effects

Sample (n = 9)

- Age, gender, dispositionmatched (sacrifice external for internal validity)
- 2. From the same school/class/grade scale
- 3. Did not eat 2 hours prior to procedure

Randomly assign to one of three groups

Independent Variable (IV)

3 levels of a single IV – single factor multi-level design

Controlling confounds:

- 1. Previous preference (response: blindfold)
- 2. Mood/State (response: mood inventories)
- Previous meal content (response: instructions to not eat before-hand)

Dependent Variable (DV)

a c c b					
Side c measures 35 and side b measures 21. What is the length of side a?					
A. 28					
B. 32					
C. 27					
D. 25					

What will we measure?

- Proportion of correct responses across each condition? (measure: accuracy)
- 2. Time to complete exam? (*measure:* reaction time)
- Self-evaluation of 'relief' or 'dread' (measure: pre-post evaluations)

DESIGN

EXPERIMENT

3. Self-reported feelings

RESULTS (Descriptive)

Mean Time

	ID	Flavor	Accuracy (%)	Time (min)	Satisfaction (1-10)
E	P1	Vanilla	70	45	7
E	P2	Vanilla	60	44	5
	P3	Vanilla	60	46	7
E	P4	Chocolate	70	48	6
TR	P5	Chocolate	65	48	8
TR	P6	Chocolate	80	47	8
E	P7	Strawberry	55	41	7
E	P8	Strawberry	85	42	5
E	P9	Strawberry	60	44	9

CAUSE-AND-EFFECT QUESTIONS

"Can ice cream flavor influence math performance?"

Research questions can be subjected to causal analysis if two principles are met

- The processes can be constrained by *time* (what happens at *time-1* vs *time-2*)
- Non-manipulated/extraneous conditions can be held constant (controlled for)

